Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Alright, let's solve this step-by-step.
We are given the following information:
1. The mean weight ([tex]\(\mu\)[/tex]) of boxes is [tex]\(95 \text{ lbs}\)[/tex].
2. The standard deviation ([tex]\(\sigma\)[/tex]) of the weights of the boxes is [tex]\(21 \text{ lbs}\)[/tex].
3. The sample size ([tex]\(n\)[/tex]) is [tex]\(49\)[/tex].
We are asked to find the mean ([tex]\(\mu_{\bar{x}}\)[/tex]) and the standard deviation ([tex]\(\sigma_{\bar{x}}\)[/tex]) of the sample mean ([tex]\(\bar{x}\)[/tex]) for samples of size 49.
### Step 1: Calculate the Mean of the Sample Mean ([tex]\(\mu_{\bar{x}}\)[/tex])
The mean of the sample mean ([tex]\(\mu_{\bar{x}}\)[/tex]) is the same as the mean of the population (the mean weight of boxes).
[tex]\[ \mu_{\bar{x}} = \mu = 95 \text{ lbs} \][/tex]
### Step 2: Calculate the Standard Deviation of the Sample Mean ([tex]\(\sigma_{\bar{x}}\)[/tex])
The standard deviation of the sample mean ([tex]\(\sigma_{\bar{x}}\)[/tex]) is given by the formula:
[tex]\[ \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \][/tex]
where:
- [tex]\(\sigma\)[/tex] is the population standard deviation,
- [tex]\(n\)[/tex] is the sample size.
Plugging in the values:
[tex]\[ \sigma_{\bar{x}} = \frac{21}{\sqrt{49}} = \frac{21}{7} = 3 \text{ lbs} \][/tex]
So, we have found:
[tex]\[ \mu_{\bar{x}} = 95 \text{ lbs} \][/tex]
[tex]\[ \sigma_{\bar{x}} = 3 \text{ lbs} \][/tex]
### Step 3: Compare with the Multiple-Choice Answers
Let's compare the calculated mean and standard deviation with the given options:
A. [tex]\(H_4 = 21 ; \theta_x = 4\)[/tex] — This is not correct.
B. [tex]\(B = 95 ; 0 = 21\)[/tex] — This gives the population standard deviation, not the standard deviation of the sample mean.
C. [tex]\(H _{ j }=85 ; 0_x=3\)[/tex] — The mean is incorrect.
D. [tex]\(H_{ x }=7.937 ; \sigma_{ x }=4\)[/tex] — Both the mean and standard deviation are incorrect.
None of the provided options correctly list [tex]\( \mu_{\bar{x}} = 95 \)[/tex] and [tex]\( \sigma_{\bar{x}} = 3 \)[/tex].
So, based on the calculations for the mean and standard deviation of the sample mean, the correct values are:
[tex]\[ \mu_{\bar{x}} = 95 \][/tex]
[tex]\[ \sigma_{\bar{x}} = 3 \][/tex]
It appears there was no correct match in the given multiple-choice options. If there was a need to identify the appropriate mean and standard deviation, the closest valid computation from our detailed steps would be as correctly deduced above.
We are given the following information:
1. The mean weight ([tex]\(\mu\)[/tex]) of boxes is [tex]\(95 \text{ lbs}\)[/tex].
2. The standard deviation ([tex]\(\sigma\)[/tex]) of the weights of the boxes is [tex]\(21 \text{ lbs}\)[/tex].
3. The sample size ([tex]\(n\)[/tex]) is [tex]\(49\)[/tex].
We are asked to find the mean ([tex]\(\mu_{\bar{x}}\)[/tex]) and the standard deviation ([tex]\(\sigma_{\bar{x}}\)[/tex]) of the sample mean ([tex]\(\bar{x}\)[/tex]) for samples of size 49.
### Step 1: Calculate the Mean of the Sample Mean ([tex]\(\mu_{\bar{x}}\)[/tex])
The mean of the sample mean ([tex]\(\mu_{\bar{x}}\)[/tex]) is the same as the mean of the population (the mean weight of boxes).
[tex]\[ \mu_{\bar{x}} = \mu = 95 \text{ lbs} \][/tex]
### Step 2: Calculate the Standard Deviation of the Sample Mean ([tex]\(\sigma_{\bar{x}}\)[/tex])
The standard deviation of the sample mean ([tex]\(\sigma_{\bar{x}}\)[/tex]) is given by the formula:
[tex]\[ \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \][/tex]
where:
- [tex]\(\sigma\)[/tex] is the population standard deviation,
- [tex]\(n\)[/tex] is the sample size.
Plugging in the values:
[tex]\[ \sigma_{\bar{x}} = \frac{21}{\sqrt{49}} = \frac{21}{7} = 3 \text{ lbs} \][/tex]
So, we have found:
[tex]\[ \mu_{\bar{x}} = 95 \text{ lbs} \][/tex]
[tex]\[ \sigma_{\bar{x}} = 3 \text{ lbs} \][/tex]
### Step 3: Compare with the Multiple-Choice Answers
Let's compare the calculated mean and standard deviation with the given options:
A. [tex]\(H_4 = 21 ; \theta_x = 4\)[/tex] — This is not correct.
B. [tex]\(B = 95 ; 0 = 21\)[/tex] — This gives the population standard deviation, not the standard deviation of the sample mean.
C. [tex]\(H _{ j }=85 ; 0_x=3\)[/tex] — The mean is incorrect.
D. [tex]\(H_{ x }=7.937 ; \sigma_{ x }=4\)[/tex] — Both the mean and standard deviation are incorrect.
None of the provided options correctly list [tex]\( \mu_{\bar{x}} = 95 \)[/tex] and [tex]\( \sigma_{\bar{x}} = 3 \)[/tex].
So, based on the calculations for the mean and standard deviation of the sample mean, the correct values are:
[tex]\[ \mu_{\bar{x}} = 95 \][/tex]
[tex]\[ \sigma_{\bar{x}} = 3 \][/tex]
It appears there was no correct match in the given multiple-choice options. If there was a need to identify the appropriate mean and standard deviation, the closest valid computation from our detailed steps would be as correctly deduced above.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.