Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's first understand the associative property of addition through a detailed step-by-step solution using the provided numerical result that relates to the expression involving the associative property of addition.
1. Step 1: Understand the associative property of addition.
- The associative property of addition states that for any three numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex], the way in which the numbers are grouped in an addition operation does not change the result.
- Symbolically, this means: [tex]\( (a + b) + c = a + (b + c) \)[/tex].
2. Step 2: Apply the associative property to the given example:
- Let's consider the first example: [tex]\((5 + 2) + 3 = 5 + (2 + 3)\)[/tex].
3. Step 3: Compute both sides of the equation:
- Compute the left side: [tex]\((5 + 2) + 3\)[/tex].
- First, add [tex]\(5\)[/tex] and [tex]\(2\)[/tex]: [tex]\( 5 + 2 = 7 \)[/tex].
- Then, add [tex]\(7\)[/tex] and [tex]\(3\)[/tex]: [tex]\( 7 + 3 = 10 \)[/tex].
- Compute the right side: [tex]\(5 + (2 + 3)\)[/tex].
- First, add [tex]\(2\)[/tex] and [tex]\(3\)[/tex]: [tex]\( 2 + 3 = 5 \)[/tex].
- Then, add [tex]\(5\)[/tex] and [tex]\(5\)[/tex]: [tex]\( 5 + 5 = 10 \)[/tex].
4. Step 4: Compare both sides of the equation:
- The left side [tex]\((5 + 2) + 3\)[/tex] yields [tex]\( 10 \)[/tex].
- The right side [tex]\(5 + (2 + 3)\)[/tex] also yields [tex]\( 10 \)[/tex].
- Hence, both sides are equal: [tex]\(10 = 10\)[/tex].
5. Step 5: Confirm that the associative property holds:
- Since both sides of the equation yield the same result, the associative property of addition holds true for [tex]\(5\)[/tex], [tex]\(2\)[/tex], and [tex]\(3\)[/tex].
- Therefore, [tex]\((5 + 2) + 3 = 5 + (2 + 3)\)[/tex] illustrates the associative property.
6. Step 6: Choose the correct statement:
- We are asked to select the statement that best describes the associative property of addition from the given options:
- [tex]\((a + b) + c = a + b\)[/tex]
- [tex]\(a + (b + c) = (a + b) + c\)[/tex]
- [tex]\(a + b + c = c + a + b\)[/tex]
- [tex]\(b + c + a = (b + c + a)\)[/tex]
- The correct statement is:
- [tex]\(a + (b + c) = (a + b) + c\)[/tex].
To summarize, based on the associative property of addition and the example provided:
The best statement that describes the associative property is:
[tex]\[ a + (b + c) = (a + b) + c \][/tex]
1. Step 1: Understand the associative property of addition.
- The associative property of addition states that for any three numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex], the way in which the numbers are grouped in an addition operation does not change the result.
- Symbolically, this means: [tex]\( (a + b) + c = a + (b + c) \)[/tex].
2. Step 2: Apply the associative property to the given example:
- Let's consider the first example: [tex]\((5 + 2) + 3 = 5 + (2 + 3)\)[/tex].
3. Step 3: Compute both sides of the equation:
- Compute the left side: [tex]\((5 + 2) + 3\)[/tex].
- First, add [tex]\(5\)[/tex] and [tex]\(2\)[/tex]: [tex]\( 5 + 2 = 7 \)[/tex].
- Then, add [tex]\(7\)[/tex] and [tex]\(3\)[/tex]: [tex]\( 7 + 3 = 10 \)[/tex].
- Compute the right side: [tex]\(5 + (2 + 3)\)[/tex].
- First, add [tex]\(2\)[/tex] and [tex]\(3\)[/tex]: [tex]\( 2 + 3 = 5 \)[/tex].
- Then, add [tex]\(5\)[/tex] and [tex]\(5\)[/tex]: [tex]\( 5 + 5 = 10 \)[/tex].
4. Step 4: Compare both sides of the equation:
- The left side [tex]\((5 + 2) + 3\)[/tex] yields [tex]\( 10 \)[/tex].
- The right side [tex]\(5 + (2 + 3)\)[/tex] also yields [tex]\( 10 \)[/tex].
- Hence, both sides are equal: [tex]\(10 = 10\)[/tex].
5. Step 5: Confirm that the associative property holds:
- Since both sides of the equation yield the same result, the associative property of addition holds true for [tex]\(5\)[/tex], [tex]\(2\)[/tex], and [tex]\(3\)[/tex].
- Therefore, [tex]\((5 + 2) + 3 = 5 + (2 + 3)\)[/tex] illustrates the associative property.
6. Step 6: Choose the correct statement:
- We are asked to select the statement that best describes the associative property of addition from the given options:
- [tex]\((a + b) + c = a + b\)[/tex]
- [tex]\(a + (b + c) = (a + b) + c\)[/tex]
- [tex]\(a + b + c = c + a + b\)[/tex]
- [tex]\(b + c + a = (b + c + a)\)[/tex]
- The correct statement is:
- [tex]\(a + (b + c) = (a + b) + c\)[/tex].
To summarize, based on the associative property of addition and the example provided:
The best statement that describes the associative property is:
[tex]\[ a + (b + c) = (a + b) + c \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.