Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine how much work the electric field does in moving a charge, we use the formula for electrical work done:
[tex]\[ W = q \Delta V \][/tex]
Here's the step-by-step solution:
1. Identify the given values:
- The charge [tex]\( q \)[/tex] is [tex]\( -7.3 \)[/tex] microcoulombs ([tex]\(\mu C\)[/tex]). Since 1 microcoulomb ([tex]\( \mu C \)[/tex]) is [tex]\( 1 \times 10^{-6} \)[/tex] coulombs, we convert the charge to coulombs:
[tex]\[ q = -7.3 \times 10^{-6} \text{ C} \][/tex]
- The potential difference [tex]\( \Delta V \)[/tex] is [tex]\( +65 \)[/tex] volts (V).
2. Substitute the given values into the formula:
[tex]\[ W = q \Delta V \][/tex]
[tex]\[ W = (-7.3 \times 10^{-6} \text{ C}) \times (65 \text{ V}) \][/tex]
3. Calculate the work done:
The product of the charge and the potential difference gives:
[tex]\[ W = -0.00047450000000000004 \text{ joules} \][/tex]
4. Express the answer with two significant figures:
Since we need the result to two significant figures, we round the answer appropriately:
[tex]\[ W \approx -4.7 \times 10^{-4} \text{ J} \][/tex]
So the electric field does approximately [tex]\( -4.7 \times 10^{-4} \)[/tex] joules of work in moving a [tex]\( -7.3 \mu C \)[/tex] charge from ground to a point whose potential is [tex]\( +65 V \)[/tex] higher.
[tex]\[ W = q \Delta V \][/tex]
Here's the step-by-step solution:
1. Identify the given values:
- The charge [tex]\( q \)[/tex] is [tex]\( -7.3 \)[/tex] microcoulombs ([tex]\(\mu C\)[/tex]). Since 1 microcoulomb ([tex]\( \mu C \)[/tex]) is [tex]\( 1 \times 10^{-6} \)[/tex] coulombs, we convert the charge to coulombs:
[tex]\[ q = -7.3 \times 10^{-6} \text{ C} \][/tex]
- The potential difference [tex]\( \Delta V \)[/tex] is [tex]\( +65 \)[/tex] volts (V).
2. Substitute the given values into the formula:
[tex]\[ W = q \Delta V \][/tex]
[tex]\[ W = (-7.3 \times 10^{-6} \text{ C}) \times (65 \text{ V}) \][/tex]
3. Calculate the work done:
The product of the charge and the potential difference gives:
[tex]\[ W = -0.00047450000000000004 \text{ joules} \][/tex]
4. Express the answer with two significant figures:
Since we need the result to two significant figures, we round the answer appropriately:
[tex]\[ W \approx -4.7 \times 10^{-4} \text{ J} \][/tex]
So the electric field does approximately [tex]\( -4.7 \times 10^{-4} \)[/tex] joules of work in moving a [tex]\( -7.3 \mu C \)[/tex] charge from ground to a point whose potential is [tex]\( +65 V \)[/tex] higher.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.