Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Given that the midpoint of the line segment is [tex]\((11, -5)\)[/tex] and one endpoint of the line segment is [tex]\((-4, -8)\)[/tex], we are to find the coordinates of the other endpoint.
We use the midpoint formula, which is:
[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
where [tex]\( M \)[/tex] is the midpoint, and [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \)[/tex] are the coordinates of the two endpoints.
For our problem:
- The midpoint [tex]\(M\)[/tex] is [tex]\((11, -5)\)[/tex]
- One endpoint [tex]\((x_1, y_1)\)[/tex] is [tex]\((-4, -8)\)[/tex]
- We need to find the coordinates [tex]\((x_2, y_2)\)[/tex] of the other endpoint.
Let's set up the equations from the midpoint formula:
[tex]\[ 11 = \frac{-4 + x_2}{2} \][/tex]
[tex]\[ -5 = \frac{-8 + y_2}{2} \][/tex]
We solve these equations step-by-step.
Step 1: Solve for [tex]\(x_2\)[/tex]
[tex]\[ 11 = \frac{-4 + x_2}{2} \][/tex]
Multiply both sides by 2 to clear the fraction:
[tex]\[ 22 = -4 + x_2 \][/tex]
Add 4 to both sides to solve for [tex]\(x_2\)[/tex]:
[tex]\[ x_2 = 22 + 4 \][/tex]
[tex]\[ x_2 = 26 \][/tex]
Step 2: Solve for [tex]\(y_2\)[/tex]
[tex]\[ -5 = \frac{-8 + y_2}{2} \][/tex]
Multiply both sides by 2 to clear the fraction:
[tex]\[ -10 = -8 + y_2 \][/tex]
Add 8 to both sides to solve for [tex]\(y_2\)[/tex]:
[tex]\[ y_2 = -10 + 8 \][/tex]
[tex]\[ y_2 = -2 \][/tex]
Thus, the coordinates of the other endpoint are [tex]\((26, -2)\)[/tex].
The correct answer is [tex]\((26, -2)\)[/tex].
We use the midpoint formula, which is:
[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
where [tex]\( M \)[/tex] is the midpoint, and [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \)[/tex] are the coordinates of the two endpoints.
For our problem:
- The midpoint [tex]\(M\)[/tex] is [tex]\((11, -5)\)[/tex]
- One endpoint [tex]\((x_1, y_1)\)[/tex] is [tex]\((-4, -8)\)[/tex]
- We need to find the coordinates [tex]\((x_2, y_2)\)[/tex] of the other endpoint.
Let's set up the equations from the midpoint formula:
[tex]\[ 11 = \frac{-4 + x_2}{2} \][/tex]
[tex]\[ -5 = \frac{-8 + y_2}{2} \][/tex]
We solve these equations step-by-step.
Step 1: Solve for [tex]\(x_2\)[/tex]
[tex]\[ 11 = \frac{-4 + x_2}{2} \][/tex]
Multiply both sides by 2 to clear the fraction:
[tex]\[ 22 = -4 + x_2 \][/tex]
Add 4 to both sides to solve for [tex]\(x_2\)[/tex]:
[tex]\[ x_2 = 22 + 4 \][/tex]
[tex]\[ x_2 = 26 \][/tex]
Step 2: Solve for [tex]\(y_2\)[/tex]
[tex]\[ -5 = \frac{-8 + y_2}{2} \][/tex]
Multiply both sides by 2 to clear the fraction:
[tex]\[ -10 = -8 + y_2 \][/tex]
Add 8 to both sides to solve for [tex]\(y_2\)[/tex]:
[tex]\[ y_2 = -10 + 8 \][/tex]
[tex]\[ y_2 = -2 \][/tex]
Thus, the coordinates of the other endpoint are [tex]\((26, -2)\)[/tex].
The correct answer is [tex]\((26, -2)\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.