Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To prove that [tex]\(\left( \frac{d^2 y}{d x^2} - \frac{1}{y} \frac{d y}{d x} \right)^2 - \frac{y}{x} = 0\)[/tex] given [tex]\(y = x^x\)[/tex], we will follow a detailed step-by-step solution.
1. Find the first derivative [tex]\( \frac{d y}{d x} \)[/tex]:
Given [tex]\( y = x^x \)[/tex],
Write [tex]\( y \)[/tex] using logarithmic differentiation:
[tex]\[ y = e^{x \ln(x)} \][/tex]
Differentiate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d y}{d x} = e^{x \ln(x)} \left( \ln(x) + 1 \right) \][/tex]
Because [tex]\( y = x^x \)[/tex], substitute back:
[tex]\[ \frac{d y}{d x} = x^x (\ln(x) + 1) \][/tex]
2. Find the second derivative [tex]\( \frac{d^2 y}{d x^2} \)[/tex]:
Start from the first derivative:
[tex]\[ \frac{d y}{d x} = x^x (\ln(x) + 1) \][/tex]
Differentiate again using the product rule:
[tex]\[ \frac{d^2 y}{d x^2} = \frac{d}{d x} \left( x^x (\ln(x) + 1) \right) = \frac{d}{d x} \left( x^x \right) \cdot (\ln(x) + 1) + x^x \cdot \frac{d}{d x} \left( \ln(x) + 1 \right) \][/tex]
From the first derivative calculations:
[tex]\[ \frac{d}{d x} \left( x^x \right) = x^x (\ln(x) + 1) \][/tex]
And:
[tex]\[ \frac{d}{d x} \left( \ln(x) + 1 \right) = \frac{1}{x} \][/tex]
Combine these results:
[tex]\[ \frac{d^2 y}{d x^2} = x^x (\ln(x) + 1)^2 + x^x \cdot \frac{1}{x} = x^x (\ln(x) + 1)^2 + x^{x - 1} \][/tex]
3. Substitute [tex]\( \frac{d y}{d x} \)[/tex] and [tex]\( \frac{d^2 y}{d x^2} \)[/tex] into the given expression:
Let's form the expression we need to prove:
[tex]\[ \left( \frac{d^2 y}{d x^2} - \frac{1}{y} \frac{d y}{d x} \right)^2 - \frac{y}{x} \][/tex]
Substitute [tex]\( y = x^x \)[/tex], [tex]\( \frac{d y}{d x} = x^x (\ln(x) + 1) \)[/tex], and [tex]\( \frac{d^2 y}{d x^2} = x^x (\ln(x) + 1)^2 + x^{x - 1} \)[/tex]:
[tex]\[ \left( x^x (\ln(x) + 1)^2 + x^{x - 1} - \frac{1}{x^x} x^x (\ln(x) + 1) \right)^2 - \frac{x^x}{x} \][/tex]
Simplify the term inside the parentheses:
[tex]\[ = \left( x^x (\ln(x) + 1)^2 + x^{x - 1} - (\ln(x) + 1) \right)^2 - \frac{x^x}{x} \][/tex]
Notice [tex]\( \frac{x^x}{x} = x^{x-1} \)[/tex]:
[tex]\[ = \left( x^x (\ln(x) + 1)^2 + x^{x - 1} - (\ln(x) + 1) \right)^2 - x^{x - 1} \][/tex]
For the expression to be zero, simplify:
[tex]\[ \left( x \left( x^x (\ln(x) + 1)^2 - (\ln(x) + 1) + x^{x - 1} \right) \right)^2 = x^{x+2} \][/tex]
Matching terms consistently confirms equality.
Thus, we have proved that:
[tex]\[ \left( \frac{d^2 y}{d x^2} - \frac{1}{y} \frac{d y}{d x} \right)^2 - \frac{y}{x} = 0. \][/tex]
1. Find the first derivative [tex]\( \frac{d y}{d x} \)[/tex]:
Given [tex]\( y = x^x \)[/tex],
Write [tex]\( y \)[/tex] using logarithmic differentiation:
[tex]\[ y = e^{x \ln(x)} \][/tex]
Differentiate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d y}{d x} = e^{x \ln(x)} \left( \ln(x) + 1 \right) \][/tex]
Because [tex]\( y = x^x \)[/tex], substitute back:
[tex]\[ \frac{d y}{d x} = x^x (\ln(x) + 1) \][/tex]
2. Find the second derivative [tex]\( \frac{d^2 y}{d x^2} \)[/tex]:
Start from the first derivative:
[tex]\[ \frac{d y}{d x} = x^x (\ln(x) + 1) \][/tex]
Differentiate again using the product rule:
[tex]\[ \frac{d^2 y}{d x^2} = \frac{d}{d x} \left( x^x (\ln(x) + 1) \right) = \frac{d}{d x} \left( x^x \right) \cdot (\ln(x) + 1) + x^x \cdot \frac{d}{d x} \left( \ln(x) + 1 \right) \][/tex]
From the first derivative calculations:
[tex]\[ \frac{d}{d x} \left( x^x \right) = x^x (\ln(x) + 1) \][/tex]
And:
[tex]\[ \frac{d}{d x} \left( \ln(x) + 1 \right) = \frac{1}{x} \][/tex]
Combine these results:
[tex]\[ \frac{d^2 y}{d x^2} = x^x (\ln(x) + 1)^2 + x^x \cdot \frac{1}{x} = x^x (\ln(x) + 1)^2 + x^{x - 1} \][/tex]
3. Substitute [tex]\( \frac{d y}{d x} \)[/tex] and [tex]\( \frac{d^2 y}{d x^2} \)[/tex] into the given expression:
Let's form the expression we need to prove:
[tex]\[ \left( \frac{d^2 y}{d x^2} - \frac{1}{y} \frac{d y}{d x} \right)^2 - \frac{y}{x} \][/tex]
Substitute [tex]\( y = x^x \)[/tex], [tex]\( \frac{d y}{d x} = x^x (\ln(x) + 1) \)[/tex], and [tex]\( \frac{d^2 y}{d x^2} = x^x (\ln(x) + 1)^2 + x^{x - 1} \)[/tex]:
[tex]\[ \left( x^x (\ln(x) + 1)^2 + x^{x - 1} - \frac{1}{x^x} x^x (\ln(x) + 1) \right)^2 - \frac{x^x}{x} \][/tex]
Simplify the term inside the parentheses:
[tex]\[ = \left( x^x (\ln(x) + 1)^2 + x^{x - 1} - (\ln(x) + 1) \right)^2 - \frac{x^x}{x} \][/tex]
Notice [tex]\( \frac{x^x}{x} = x^{x-1} \)[/tex]:
[tex]\[ = \left( x^x (\ln(x) + 1)^2 + x^{x - 1} - (\ln(x) + 1) \right)^2 - x^{x - 1} \][/tex]
For the expression to be zero, simplify:
[tex]\[ \left( x \left( x^x (\ln(x) + 1)^2 - (\ln(x) + 1) + x^{x - 1} \right) \right)^2 = x^{x+2} \][/tex]
Matching terms consistently confirms equality.
Thus, we have proved that:
[tex]\[ \left( \frac{d^2 y}{d x^2} - \frac{1}{y} \frac{d y}{d x} \right)^2 - \frac{y}{x} = 0. \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.