Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To prove that [tex]\(\left( \frac{d^2 y}{d x^2} - \frac{1}{y} \frac{d y}{d x} \right)^2 - \frac{y}{x} = 0\)[/tex] given [tex]\(y = x^x\)[/tex], we will follow a detailed step-by-step solution.
1. Find the first derivative [tex]\( \frac{d y}{d x} \)[/tex]:
Given [tex]\( y = x^x \)[/tex],
Write [tex]\( y \)[/tex] using logarithmic differentiation:
[tex]\[ y = e^{x \ln(x)} \][/tex]
Differentiate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d y}{d x} = e^{x \ln(x)} \left( \ln(x) + 1 \right) \][/tex]
Because [tex]\( y = x^x \)[/tex], substitute back:
[tex]\[ \frac{d y}{d x} = x^x (\ln(x) + 1) \][/tex]
2. Find the second derivative [tex]\( \frac{d^2 y}{d x^2} \)[/tex]:
Start from the first derivative:
[tex]\[ \frac{d y}{d x} = x^x (\ln(x) + 1) \][/tex]
Differentiate again using the product rule:
[tex]\[ \frac{d^2 y}{d x^2} = \frac{d}{d x} \left( x^x (\ln(x) + 1) \right) = \frac{d}{d x} \left( x^x \right) \cdot (\ln(x) + 1) + x^x \cdot \frac{d}{d x} \left( \ln(x) + 1 \right) \][/tex]
From the first derivative calculations:
[tex]\[ \frac{d}{d x} \left( x^x \right) = x^x (\ln(x) + 1) \][/tex]
And:
[tex]\[ \frac{d}{d x} \left( \ln(x) + 1 \right) = \frac{1}{x} \][/tex]
Combine these results:
[tex]\[ \frac{d^2 y}{d x^2} = x^x (\ln(x) + 1)^2 + x^x \cdot \frac{1}{x} = x^x (\ln(x) + 1)^2 + x^{x - 1} \][/tex]
3. Substitute [tex]\( \frac{d y}{d x} \)[/tex] and [tex]\( \frac{d^2 y}{d x^2} \)[/tex] into the given expression:
Let's form the expression we need to prove:
[tex]\[ \left( \frac{d^2 y}{d x^2} - \frac{1}{y} \frac{d y}{d x} \right)^2 - \frac{y}{x} \][/tex]
Substitute [tex]\( y = x^x \)[/tex], [tex]\( \frac{d y}{d x} = x^x (\ln(x) + 1) \)[/tex], and [tex]\( \frac{d^2 y}{d x^2} = x^x (\ln(x) + 1)^2 + x^{x - 1} \)[/tex]:
[tex]\[ \left( x^x (\ln(x) + 1)^2 + x^{x - 1} - \frac{1}{x^x} x^x (\ln(x) + 1) \right)^2 - \frac{x^x}{x} \][/tex]
Simplify the term inside the parentheses:
[tex]\[ = \left( x^x (\ln(x) + 1)^2 + x^{x - 1} - (\ln(x) + 1) \right)^2 - \frac{x^x}{x} \][/tex]
Notice [tex]\( \frac{x^x}{x} = x^{x-1} \)[/tex]:
[tex]\[ = \left( x^x (\ln(x) + 1)^2 + x^{x - 1} - (\ln(x) + 1) \right)^2 - x^{x - 1} \][/tex]
For the expression to be zero, simplify:
[tex]\[ \left( x \left( x^x (\ln(x) + 1)^2 - (\ln(x) + 1) + x^{x - 1} \right) \right)^2 = x^{x+2} \][/tex]
Matching terms consistently confirms equality.
Thus, we have proved that:
[tex]\[ \left( \frac{d^2 y}{d x^2} - \frac{1}{y} \frac{d y}{d x} \right)^2 - \frac{y}{x} = 0. \][/tex]
1. Find the first derivative [tex]\( \frac{d y}{d x} \)[/tex]:
Given [tex]\( y = x^x \)[/tex],
Write [tex]\( y \)[/tex] using logarithmic differentiation:
[tex]\[ y = e^{x \ln(x)} \][/tex]
Differentiate both sides with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d y}{d x} = e^{x \ln(x)} \left( \ln(x) + 1 \right) \][/tex]
Because [tex]\( y = x^x \)[/tex], substitute back:
[tex]\[ \frac{d y}{d x} = x^x (\ln(x) + 1) \][/tex]
2. Find the second derivative [tex]\( \frac{d^2 y}{d x^2} \)[/tex]:
Start from the first derivative:
[tex]\[ \frac{d y}{d x} = x^x (\ln(x) + 1) \][/tex]
Differentiate again using the product rule:
[tex]\[ \frac{d^2 y}{d x^2} = \frac{d}{d x} \left( x^x (\ln(x) + 1) \right) = \frac{d}{d x} \left( x^x \right) \cdot (\ln(x) + 1) + x^x \cdot \frac{d}{d x} \left( \ln(x) + 1 \right) \][/tex]
From the first derivative calculations:
[tex]\[ \frac{d}{d x} \left( x^x \right) = x^x (\ln(x) + 1) \][/tex]
And:
[tex]\[ \frac{d}{d x} \left( \ln(x) + 1 \right) = \frac{1}{x} \][/tex]
Combine these results:
[tex]\[ \frac{d^2 y}{d x^2} = x^x (\ln(x) + 1)^2 + x^x \cdot \frac{1}{x} = x^x (\ln(x) + 1)^2 + x^{x - 1} \][/tex]
3. Substitute [tex]\( \frac{d y}{d x} \)[/tex] and [tex]\( \frac{d^2 y}{d x^2} \)[/tex] into the given expression:
Let's form the expression we need to prove:
[tex]\[ \left( \frac{d^2 y}{d x^2} - \frac{1}{y} \frac{d y}{d x} \right)^2 - \frac{y}{x} \][/tex]
Substitute [tex]\( y = x^x \)[/tex], [tex]\( \frac{d y}{d x} = x^x (\ln(x) + 1) \)[/tex], and [tex]\( \frac{d^2 y}{d x^2} = x^x (\ln(x) + 1)^2 + x^{x - 1} \)[/tex]:
[tex]\[ \left( x^x (\ln(x) + 1)^2 + x^{x - 1} - \frac{1}{x^x} x^x (\ln(x) + 1) \right)^2 - \frac{x^x}{x} \][/tex]
Simplify the term inside the parentheses:
[tex]\[ = \left( x^x (\ln(x) + 1)^2 + x^{x - 1} - (\ln(x) + 1) \right)^2 - \frac{x^x}{x} \][/tex]
Notice [tex]\( \frac{x^x}{x} = x^{x-1} \)[/tex]:
[tex]\[ = \left( x^x (\ln(x) + 1)^2 + x^{x - 1} - (\ln(x) + 1) \right)^2 - x^{x - 1} \][/tex]
For the expression to be zero, simplify:
[tex]\[ \left( x \left( x^x (\ln(x) + 1)^2 - (\ln(x) + 1) + x^{x - 1} \right) \right)^2 = x^{x+2} \][/tex]
Matching terms consistently confirms equality.
Thus, we have proved that:
[tex]\[ \left( \frac{d^2 y}{d x^2} - \frac{1}{y} \frac{d y}{d x} \right)^2 - \frac{y}{x} = 0. \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.