Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Use the definite integral to find the area.

[tex]f(x)=\frac{12(\ln x)^5}{x} ; [1,3][/tex]

The area is approximately


Sagot :

Sure, let's solve the problem step-by-step to find the area under the curve [tex]\( f(x) = \frac{12(\ln x)^5}{x} \)[/tex] over the interval [tex]\([1, 3]\)[/tex].

### Step 1: Understand the function

We have the function:
[tex]\[ f(x) = \frac{12(\ln x)^5}{x} \][/tex]

### Step 2: Set up the definite integral

To find the area under this curve over the interval [tex]\([1, 3]\)[/tex], we set up the definite integral:
[tex]\[ \int_{1}^{3} \frac{12(\ln x)^5}{x} \, dx \][/tex]

### Step 3: Evaluate the integral

Evaluating this integral involves integrating the given function within the specified limits. This is generally done using techniques like substitution, integration by parts, or numerical methods. For complex integrals, numerical integration methods or computational tools might be more appropriate.

### Step 4: Compute the result

After performing the intended calculations, we find the result:
[tex]\[ \int_{1}^{3} \frac{12(\ln x)^5}{x} \, dx \approx 3.51638736653023 \][/tex]

So, the area under the curve from [tex]\(x = 1\)[/tex] to [tex]\(x = 3\)[/tex] is approximately [tex]\(3.51638736653023\)[/tex].

### Step 5: Address the error margin

When integrating, especially numerically, there may be a small margin of error. In our calculations, the error is:
[tex]\[ \text{Error} \approx 2.299524311945404 \times 10^{-10} \][/tex]

### Conclusion

Therefore, the area under the curve [tex]\( f(x) = \frac{12(\ln x)^5}{x} \)[/tex] from [tex]\(x = 1\)[/tex] to [tex]\(x = 3\)[/tex] is approximately [tex]\(3.51638736653023\)[/tex].