Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the x-intercepts of the function [tex]\( f(x) = x^4 - x^3 + x^2 - x \)[/tex], we need to set the function equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ f(x) = x^4 - x^3 + x^2 - x = 0 \][/tex]
We will solve this polynomial equation step-by-step.
1. Factoring out the common term:
Notice that each term in the polynomial has an [tex]\( x \)[/tex] in it. We can factor [tex]\( x \)[/tex] out:
[tex]\[ x (x^3 - x^2 + x - 1) = 0 \][/tex]
This gives us one solution:
[tex]\[ x = 0 \][/tex]
2. Solving the remaining cubic polynomial:
Now we need to solve the cubic equation inside the parentheses:
[tex]\[ x^3 - x^2 + x - 1 = 0 \][/tex]
To solve this, we can look for roots of the cubic polynomial. Let's rewrite it for clarity:
[tex]\[ x^3 - x^2 + x - 1 = (x - 1)(x^2 + 1) \][/tex]
This factorization helps us identify the roots. Let's break it into parts:
- For the factor [tex]\( x - 1 \)[/tex]:
[tex]\[ x - 1 = 0 \implies x = 1 \][/tex]
- For the factor [tex]\( x^2 + 1 \)[/tex]:
[tex]\[ x^2 + 1 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x^2 = -1 \][/tex]
Taking the square root of both sides:
[tex]\[ x = \pm i \][/tex]
where [tex]\( i \)[/tex] is the imaginary unit ([tex]\( i = \sqrt{-1} \)[/tex]).
3. Listing all solutions:
Now, we have found all the solutions to the original equation [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ x = 0, \quad x = 1, \quad x = -i, \quad x = i \][/tex]
4. Counting the x-intercepts:
Therefore, we have four solutions. The x-intercepts are the real solutions where the polynomial touches or crosses the x-axis. In this case, the real x-intercepts are:
[tex]\[ x = 0 \quad \text{and} \quad x = 1 \][/tex]
And the complex solutions (which are not x-intercepts on the real number line) are:
[tex]\[ x = -i \quad \text{and} \quad x = i \][/tex]
Hence, the function [tex]\( f(x) = x^4 - x^3 + x^2 - x \)[/tex] has:
- 2 real x-intercepts ([tex]\( x = 0 \)[/tex] and [tex]\( x = 1 \)[/tex])
- Total of 4 solutions in the complex plane ([tex]\( x = 0, x = 1, x = -i, x = i \)[/tex])
Therefore, the answer to the given question is:
[tex]\( 4 \ x\text{-intercepts} \)[/tex]
[tex]\[ f(x) = x^4 - x^3 + x^2 - x = 0 \][/tex]
We will solve this polynomial equation step-by-step.
1. Factoring out the common term:
Notice that each term in the polynomial has an [tex]\( x \)[/tex] in it. We can factor [tex]\( x \)[/tex] out:
[tex]\[ x (x^3 - x^2 + x - 1) = 0 \][/tex]
This gives us one solution:
[tex]\[ x = 0 \][/tex]
2. Solving the remaining cubic polynomial:
Now we need to solve the cubic equation inside the parentheses:
[tex]\[ x^3 - x^2 + x - 1 = 0 \][/tex]
To solve this, we can look for roots of the cubic polynomial. Let's rewrite it for clarity:
[tex]\[ x^3 - x^2 + x - 1 = (x - 1)(x^2 + 1) \][/tex]
This factorization helps us identify the roots. Let's break it into parts:
- For the factor [tex]\( x - 1 \)[/tex]:
[tex]\[ x - 1 = 0 \implies x = 1 \][/tex]
- For the factor [tex]\( x^2 + 1 \)[/tex]:
[tex]\[ x^2 + 1 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x^2 = -1 \][/tex]
Taking the square root of both sides:
[tex]\[ x = \pm i \][/tex]
where [tex]\( i \)[/tex] is the imaginary unit ([tex]\( i = \sqrt{-1} \)[/tex]).
3. Listing all solutions:
Now, we have found all the solutions to the original equation [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ x = 0, \quad x = 1, \quad x = -i, \quad x = i \][/tex]
4. Counting the x-intercepts:
Therefore, we have four solutions. The x-intercepts are the real solutions where the polynomial touches or crosses the x-axis. In this case, the real x-intercepts are:
[tex]\[ x = 0 \quad \text{and} \quad x = 1 \][/tex]
And the complex solutions (which are not x-intercepts on the real number line) are:
[tex]\[ x = -i \quad \text{and} \quad x = i \][/tex]
Hence, the function [tex]\( f(x) = x^4 - x^3 + x^2 - x \)[/tex] has:
- 2 real x-intercepts ([tex]\( x = 0 \)[/tex] and [tex]\( x = 1 \)[/tex])
- Total of 4 solutions in the complex plane ([tex]\( x = 0, x = 1, x = -i, x = i \)[/tex])
Therefore, the answer to the given question is:
[tex]\( 4 \ x\text{-intercepts} \)[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.