Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the x-intercepts of the function [tex]\( f(x) = x^4 - x^3 + x^2 - x \)[/tex], we need to set the function equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ f(x) = x^4 - x^3 + x^2 - x = 0 \][/tex]
We will solve this polynomial equation step-by-step.
1. Factoring out the common term:
Notice that each term in the polynomial has an [tex]\( x \)[/tex] in it. We can factor [tex]\( x \)[/tex] out:
[tex]\[ x (x^3 - x^2 + x - 1) = 0 \][/tex]
This gives us one solution:
[tex]\[ x = 0 \][/tex]
2. Solving the remaining cubic polynomial:
Now we need to solve the cubic equation inside the parentheses:
[tex]\[ x^3 - x^2 + x - 1 = 0 \][/tex]
To solve this, we can look for roots of the cubic polynomial. Let's rewrite it for clarity:
[tex]\[ x^3 - x^2 + x - 1 = (x - 1)(x^2 + 1) \][/tex]
This factorization helps us identify the roots. Let's break it into parts:
- For the factor [tex]\( x - 1 \)[/tex]:
[tex]\[ x - 1 = 0 \implies x = 1 \][/tex]
- For the factor [tex]\( x^2 + 1 \)[/tex]:
[tex]\[ x^2 + 1 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x^2 = -1 \][/tex]
Taking the square root of both sides:
[tex]\[ x = \pm i \][/tex]
where [tex]\( i \)[/tex] is the imaginary unit ([tex]\( i = \sqrt{-1} \)[/tex]).
3. Listing all solutions:
Now, we have found all the solutions to the original equation [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ x = 0, \quad x = 1, \quad x = -i, \quad x = i \][/tex]
4. Counting the x-intercepts:
Therefore, we have four solutions. The x-intercepts are the real solutions where the polynomial touches or crosses the x-axis. In this case, the real x-intercepts are:
[tex]\[ x = 0 \quad \text{and} \quad x = 1 \][/tex]
And the complex solutions (which are not x-intercepts on the real number line) are:
[tex]\[ x = -i \quad \text{and} \quad x = i \][/tex]
Hence, the function [tex]\( f(x) = x^4 - x^3 + x^2 - x \)[/tex] has:
- 2 real x-intercepts ([tex]\( x = 0 \)[/tex] and [tex]\( x = 1 \)[/tex])
- Total of 4 solutions in the complex plane ([tex]\( x = 0, x = 1, x = -i, x = i \)[/tex])
Therefore, the answer to the given question is:
[tex]\( 4 \ x\text{-intercepts} \)[/tex]
[tex]\[ f(x) = x^4 - x^3 + x^2 - x = 0 \][/tex]
We will solve this polynomial equation step-by-step.
1. Factoring out the common term:
Notice that each term in the polynomial has an [tex]\( x \)[/tex] in it. We can factor [tex]\( x \)[/tex] out:
[tex]\[ x (x^3 - x^2 + x - 1) = 0 \][/tex]
This gives us one solution:
[tex]\[ x = 0 \][/tex]
2. Solving the remaining cubic polynomial:
Now we need to solve the cubic equation inside the parentheses:
[tex]\[ x^3 - x^2 + x - 1 = 0 \][/tex]
To solve this, we can look for roots of the cubic polynomial. Let's rewrite it for clarity:
[tex]\[ x^3 - x^2 + x - 1 = (x - 1)(x^2 + 1) \][/tex]
This factorization helps us identify the roots. Let's break it into parts:
- For the factor [tex]\( x - 1 \)[/tex]:
[tex]\[ x - 1 = 0 \implies x = 1 \][/tex]
- For the factor [tex]\( x^2 + 1 \)[/tex]:
[tex]\[ x^2 + 1 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x^2 = -1 \][/tex]
Taking the square root of both sides:
[tex]\[ x = \pm i \][/tex]
where [tex]\( i \)[/tex] is the imaginary unit ([tex]\( i = \sqrt{-1} \)[/tex]).
3. Listing all solutions:
Now, we have found all the solutions to the original equation [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ x = 0, \quad x = 1, \quad x = -i, \quad x = i \][/tex]
4. Counting the x-intercepts:
Therefore, we have four solutions. The x-intercepts are the real solutions where the polynomial touches or crosses the x-axis. In this case, the real x-intercepts are:
[tex]\[ x = 0 \quad \text{and} \quad x = 1 \][/tex]
And the complex solutions (which are not x-intercepts on the real number line) are:
[tex]\[ x = -i \quad \text{and} \quad x = i \][/tex]
Hence, the function [tex]\( f(x) = x^4 - x^3 + x^2 - x \)[/tex] has:
- 2 real x-intercepts ([tex]\( x = 0 \)[/tex] and [tex]\( x = 1 \)[/tex])
- Total of 4 solutions in the complex plane ([tex]\( x = 0, x = 1, x = -i, x = i \)[/tex])
Therefore, the answer to the given question is:
[tex]\( 4 \ x\text{-intercepts} \)[/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.