At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the x-intercepts of the function [tex]\( f(x) = x^4 - x^3 + x^2 - x \)[/tex], we need to set the function equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ f(x) = x^4 - x^3 + x^2 - x = 0 \][/tex]
We will solve this polynomial equation step-by-step.
1. Factoring out the common term:
Notice that each term in the polynomial has an [tex]\( x \)[/tex] in it. We can factor [tex]\( x \)[/tex] out:
[tex]\[ x (x^3 - x^2 + x - 1) = 0 \][/tex]
This gives us one solution:
[tex]\[ x = 0 \][/tex]
2. Solving the remaining cubic polynomial:
Now we need to solve the cubic equation inside the parentheses:
[tex]\[ x^3 - x^2 + x - 1 = 0 \][/tex]
To solve this, we can look for roots of the cubic polynomial. Let's rewrite it for clarity:
[tex]\[ x^3 - x^2 + x - 1 = (x - 1)(x^2 + 1) \][/tex]
This factorization helps us identify the roots. Let's break it into parts:
- For the factor [tex]\( x - 1 \)[/tex]:
[tex]\[ x - 1 = 0 \implies x = 1 \][/tex]
- For the factor [tex]\( x^2 + 1 \)[/tex]:
[tex]\[ x^2 + 1 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x^2 = -1 \][/tex]
Taking the square root of both sides:
[tex]\[ x = \pm i \][/tex]
where [tex]\( i \)[/tex] is the imaginary unit ([tex]\( i = \sqrt{-1} \)[/tex]).
3. Listing all solutions:
Now, we have found all the solutions to the original equation [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ x = 0, \quad x = 1, \quad x = -i, \quad x = i \][/tex]
4. Counting the x-intercepts:
Therefore, we have four solutions. The x-intercepts are the real solutions where the polynomial touches or crosses the x-axis. In this case, the real x-intercepts are:
[tex]\[ x = 0 \quad \text{and} \quad x = 1 \][/tex]
And the complex solutions (which are not x-intercepts on the real number line) are:
[tex]\[ x = -i \quad \text{and} \quad x = i \][/tex]
Hence, the function [tex]\( f(x) = x^4 - x^3 + x^2 - x \)[/tex] has:
- 2 real x-intercepts ([tex]\( x = 0 \)[/tex] and [tex]\( x = 1 \)[/tex])
- Total of 4 solutions in the complex plane ([tex]\( x = 0, x = 1, x = -i, x = i \)[/tex])
Therefore, the answer to the given question is:
[tex]\( 4 \ x\text{-intercepts} \)[/tex]
[tex]\[ f(x) = x^4 - x^3 + x^2 - x = 0 \][/tex]
We will solve this polynomial equation step-by-step.
1. Factoring out the common term:
Notice that each term in the polynomial has an [tex]\( x \)[/tex] in it. We can factor [tex]\( x \)[/tex] out:
[tex]\[ x (x^3 - x^2 + x - 1) = 0 \][/tex]
This gives us one solution:
[tex]\[ x = 0 \][/tex]
2. Solving the remaining cubic polynomial:
Now we need to solve the cubic equation inside the parentheses:
[tex]\[ x^3 - x^2 + x - 1 = 0 \][/tex]
To solve this, we can look for roots of the cubic polynomial. Let's rewrite it for clarity:
[tex]\[ x^3 - x^2 + x - 1 = (x - 1)(x^2 + 1) \][/tex]
This factorization helps us identify the roots. Let's break it into parts:
- For the factor [tex]\( x - 1 \)[/tex]:
[tex]\[ x - 1 = 0 \implies x = 1 \][/tex]
- For the factor [tex]\( x^2 + 1 \)[/tex]:
[tex]\[ x^2 + 1 = 0 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ x^2 = -1 \][/tex]
Taking the square root of both sides:
[tex]\[ x = \pm i \][/tex]
where [tex]\( i \)[/tex] is the imaginary unit ([tex]\( i = \sqrt{-1} \)[/tex]).
3. Listing all solutions:
Now, we have found all the solutions to the original equation [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ x = 0, \quad x = 1, \quad x = -i, \quad x = i \][/tex]
4. Counting the x-intercepts:
Therefore, we have four solutions. The x-intercepts are the real solutions where the polynomial touches or crosses the x-axis. In this case, the real x-intercepts are:
[tex]\[ x = 0 \quad \text{and} \quad x = 1 \][/tex]
And the complex solutions (which are not x-intercepts on the real number line) are:
[tex]\[ x = -i \quad \text{and} \quad x = i \][/tex]
Hence, the function [tex]\( f(x) = x^4 - x^3 + x^2 - x \)[/tex] has:
- 2 real x-intercepts ([tex]\( x = 0 \)[/tex] and [tex]\( x = 1 \)[/tex])
- Total of 4 solutions in the complex plane ([tex]\( x = 0, x = 1, x = -i, x = i \)[/tex])
Therefore, the answer to the given question is:
[tex]\( 4 \ x\text{-intercepts} \)[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.