Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the vertex of the function [tex]\( f(x) = -|x + 7| - 4 \)[/tex], we will analyze its structure, specifically focusing on the form and parameters of the absolute value function.
1. Identify the standard form: The general form of an absolute value function can be written as [tex]\( f(x) = a|x - h| + k \)[/tex], where [tex]\( (h, k) \)[/tex] represents the vertex of the function.
2. Recognize the given function parameters:
- Note that the given function is [tex]\( f(x) = -|x + 7| - 4 \)[/tex].
- We need to rewrite [tex]\( x + 7 \)[/tex] in a form that matches [tex]\( x - h \)[/tex]. This can be done by observing that [tex]\( x + 7 \)[/tex] is equivalent to [tex]\( x - (-7) \)[/tex]. Hence, [tex]\( h = -7 \)[/tex].
3. Identify the vertical shift:
- The constant term outside the absolute value function, [tex]\(-4\)[/tex], represents the vertical shift [tex]\( k \)[/tex].
- Hence, [tex]\( k = -4 \)[/tex].
4. Determine the vertex: Using the parameters identified for [tex]\( h \)[/tex] and [tex]\( k \)[/tex]:
- The vertex [tex]\( (h, k) = (-7, -4) \)[/tex].
5. Conclusion: The vertex of the function [tex]\( f(x) = -|x + 7| - 4 \)[/tex] is [tex]\( (-7, -4) \)[/tex].
Therefore, the correct choice is:
A. [tex]\( (-7, -4) \)[/tex].
1. Identify the standard form: The general form of an absolute value function can be written as [tex]\( f(x) = a|x - h| + k \)[/tex], where [tex]\( (h, k) \)[/tex] represents the vertex of the function.
2. Recognize the given function parameters:
- Note that the given function is [tex]\( f(x) = -|x + 7| - 4 \)[/tex].
- We need to rewrite [tex]\( x + 7 \)[/tex] in a form that matches [tex]\( x - h \)[/tex]. This can be done by observing that [tex]\( x + 7 \)[/tex] is equivalent to [tex]\( x - (-7) \)[/tex]. Hence, [tex]\( h = -7 \)[/tex].
3. Identify the vertical shift:
- The constant term outside the absolute value function, [tex]\(-4\)[/tex], represents the vertical shift [tex]\( k \)[/tex].
- Hence, [tex]\( k = -4 \)[/tex].
4. Determine the vertex: Using the parameters identified for [tex]\( h \)[/tex] and [tex]\( k \)[/tex]:
- The vertex [tex]\( (h, k) = (-7, -4) \)[/tex].
5. Conclusion: The vertex of the function [tex]\( f(x) = -|x + 7| - 4 \)[/tex] is [tex]\( (-7, -4) \)[/tex].
Therefore, the correct choice is:
A. [tex]\( (-7, -4) \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.