Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

What is the range of the function [tex][tex]$y=\sqrt{x+5}$[/tex][/tex]?

A. [tex][tex]$y \geq -5$[/tex][/tex]
B. [tex][tex]$y \geq 0$[/tex][/tex]
C. [tex][tex]$y \geq \sqrt{5}$[/tex][/tex]
D. [tex][tex]$y \geq 5$[/tex][/tex]


Sagot :

To find the range of the function [tex]\( y = \sqrt{x + 5} \)[/tex], we need to consider the values that [tex]\( y \)[/tex] can take.

1. Domain of the function:
- The expression inside the square root, [tex]\( x + 5 \)[/tex], must be non-negative because the square root of a negative number is not defined in the real number system.
- Therefore, the condition is [tex]\( x + 5 \geq 0 \)[/tex], which simplifies to [tex]\( x \geq -5 \)[/tex].

2. Possible values for [tex]\( y \)[/tex]:
- When [tex]\( x = -5 \)[/tex], the expression inside the square root becomes [tex]\( -5 + 5 = 0 \)[/tex].
- Thus, [tex]\( y = \sqrt{0} = 0 \)[/tex].

3. Behavior of the function:
- For all [tex]\( x \geq -5 \)[/tex], [tex]\( x + 5 \)[/tex] is non-negative, and the square root of a non-negative number is always non-negative.
- Thus, [tex]\( \sqrt{x + 5} \)[/tex] yields only non-negative values.
- As [tex]\( x \)[/tex] increases, [tex]\( x + 5 \)[/tex] increases, and so does [tex]\( \sqrt{x + 5} \)[/tex].

In conclusion, the function [tex]\( y = \sqrt{x + 5} \)[/tex] produces non-negative values for all permissible [tex]\( x \)[/tex]. Therefore, the range of the function is [tex]\( y \geq 0 \)[/tex].

The range of [tex]\( y = \sqrt{x + 5} \)[/tex] is:
[tex]\[ y \geq 0 \][/tex]

Hence, the correct answer is:
[tex]\[ y \geq 0 \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.