Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the domain of the function [tex]\(y = \sqrt[3]{x-1}\)[/tex], we need to analyze where the expression under the cube root is defined and produces real numbers.
The function given is [tex]\(y = \sqrt[3]{x-1}\)[/tex]. Let's break it down step by step:
1. Identify the Core Operation: The function involves a cube root, specifically [tex]\(\sqrt[3]{x-1}\)[/tex].
2. Characteristics of Cube Root Function: The cube root function, [tex]\(\sqrt[3]{u}\)[/tex], is defined for all real numbers [tex]\(u\)[/tex]. This means that there are no restrictions on [tex]\(u\)[/tex] because the cube root of any real number [tex]\(u\)[/tex] (positive, negative, or zero) is also a real number.
3. Translate to the Given Function: For the function [tex]\(y = \sqrt[3]{x-1}\)[/tex], we substitute [tex]\(u = x-1\)[/tex]. Given that the cube root function does not impose any restrictions, [tex]\(u = x-1\)[/tex] can be any real number.
4. Solving for [tex]\(x\)[/tex]: Since [tex]\(x-1\)[/tex] can be any real number, solving for [tex]\(x\)[/tex] yields:
[tex]\[ x-1 \in \mathbb{R} \][/tex]
where [tex]\(\mathbb{R}\)[/tex] denotes the set of all real numbers. Adding 1 to both sides, we get:
[tex]\[ x \in \mathbb{R} \][/tex]
Thus, the domain of the function [tex]\(y = \sqrt[3]{x-1}\)[/tex] is all real numbers. In interval notation, this is expressed as:
[tex]\[ (-\infty, \infty) \][/tex]
Therefore, the correct answer is:
[tex]\[ -\infty < x < \infty \][/tex]
The function given is [tex]\(y = \sqrt[3]{x-1}\)[/tex]. Let's break it down step by step:
1. Identify the Core Operation: The function involves a cube root, specifically [tex]\(\sqrt[3]{x-1}\)[/tex].
2. Characteristics of Cube Root Function: The cube root function, [tex]\(\sqrt[3]{u}\)[/tex], is defined for all real numbers [tex]\(u\)[/tex]. This means that there are no restrictions on [tex]\(u\)[/tex] because the cube root of any real number [tex]\(u\)[/tex] (positive, negative, or zero) is also a real number.
3. Translate to the Given Function: For the function [tex]\(y = \sqrt[3]{x-1}\)[/tex], we substitute [tex]\(u = x-1\)[/tex]. Given that the cube root function does not impose any restrictions, [tex]\(u = x-1\)[/tex] can be any real number.
4. Solving for [tex]\(x\)[/tex]: Since [tex]\(x-1\)[/tex] can be any real number, solving for [tex]\(x\)[/tex] yields:
[tex]\[ x-1 \in \mathbb{R} \][/tex]
where [tex]\(\mathbb{R}\)[/tex] denotes the set of all real numbers. Adding 1 to both sides, we get:
[tex]\[ x \in \mathbb{R} \][/tex]
Thus, the domain of the function [tex]\(y = \sqrt[3]{x-1}\)[/tex] is all real numbers. In interval notation, this is expressed as:
[tex]\[ (-\infty, \infty) \][/tex]
Therefore, the correct answer is:
[tex]\[ -\infty < x < \infty \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.