Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the domain of the function [tex]\(y = \sqrt[3]{x-1}\)[/tex], we need to analyze where the expression under the cube root is defined and produces real numbers.
The function given is [tex]\(y = \sqrt[3]{x-1}\)[/tex]. Let's break it down step by step:
1. Identify the Core Operation: The function involves a cube root, specifically [tex]\(\sqrt[3]{x-1}\)[/tex].
2. Characteristics of Cube Root Function: The cube root function, [tex]\(\sqrt[3]{u}\)[/tex], is defined for all real numbers [tex]\(u\)[/tex]. This means that there are no restrictions on [tex]\(u\)[/tex] because the cube root of any real number [tex]\(u\)[/tex] (positive, negative, or zero) is also a real number.
3. Translate to the Given Function: For the function [tex]\(y = \sqrt[3]{x-1}\)[/tex], we substitute [tex]\(u = x-1\)[/tex]. Given that the cube root function does not impose any restrictions, [tex]\(u = x-1\)[/tex] can be any real number.
4. Solving for [tex]\(x\)[/tex]: Since [tex]\(x-1\)[/tex] can be any real number, solving for [tex]\(x\)[/tex] yields:
[tex]\[ x-1 \in \mathbb{R} \][/tex]
where [tex]\(\mathbb{R}\)[/tex] denotes the set of all real numbers. Adding 1 to both sides, we get:
[tex]\[ x \in \mathbb{R} \][/tex]
Thus, the domain of the function [tex]\(y = \sqrt[3]{x-1}\)[/tex] is all real numbers. In interval notation, this is expressed as:
[tex]\[ (-\infty, \infty) \][/tex]
Therefore, the correct answer is:
[tex]\[ -\infty < x < \infty \][/tex]
The function given is [tex]\(y = \sqrt[3]{x-1}\)[/tex]. Let's break it down step by step:
1. Identify the Core Operation: The function involves a cube root, specifically [tex]\(\sqrt[3]{x-1}\)[/tex].
2. Characteristics of Cube Root Function: The cube root function, [tex]\(\sqrt[3]{u}\)[/tex], is defined for all real numbers [tex]\(u\)[/tex]. This means that there are no restrictions on [tex]\(u\)[/tex] because the cube root of any real number [tex]\(u\)[/tex] (positive, negative, or zero) is also a real number.
3. Translate to the Given Function: For the function [tex]\(y = \sqrt[3]{x-1}\)[/tex], we substitute [tex]\(u = x-1\)[/tex]. Given that the cube root function does not impose any restrictions, [tex]\(u = x-1\)[/tex] can be any real number.
4. Solving for [tex]\(x\)[/tex]: Since [tex]\(x-1\)[/tex] can be any real number, solving for [tex]\(x\)[/tex] yields:
[tex]\[ x-1 \in \mathbb{R} \][/tex]
where [tex]\(\mathbb{R}\)[/tex] denotes the set of all real numbers. Adding 1 to both sides, we get:
[tex]\[ x \in \mathbb{R} \][/tex]
Thus, the domain of the function [tex]\(y = \sqrt[3]{x-1}\)[/tex] is all real numbers. In interval notation, this is expressed as:
[tex]\[ (-\infty, \infty) \][/tex]
Therefore, the correct answer is:
[tex]\[ -\infty < x < \infty \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.