Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

What is the domain of the function [tex]y=\sqrt[3]{x}[/tex]?

A. [tex]-\infty \ \textless \ x \ \textless \ \infty[/tex]
B. [tex]0 \ \textless \ x \ \textless \ \infty[/tex]
C. [tex]0 \leq x \ \textless \ \infty[/tex]
D. [tex]1 \leq x \ \textless \ \infty[/tex]

Sagot :

Let's analyze the function [tex]\( y = \sqrt[3]{x} \)[/tex] in order to determine its domain.

The cube root function [tex]\( \sqrt[3]{x} \)[/tex] is the inverse of the cube function [tex]\( x^3 \)[/tex]. An important property of the cube root function is that it is defined for all real numbers. This means that you can take the cube root of any real number, whether it is positive, negative, or zero.

For example:
- The cube root of a positive number [tex]\( \sqrt[3]{8} = 2 \)[/tex].
- The cube root of zero [tex]\( \sqrt[3]{0} = 0 \)[/tex].
- The cube root of a negative number [tex]\( \sqrt[3]{-8} = -2 \)[/tex].

Since there are no restrictions on the values that [tex]\( x \)[/tex] can take for the function [tex]\( y = \sqrt[3]{x} \)[/tex], the domain includes all real numbers.

Thus, the domain of the function [tex]\( y = \sqrt[3]{x} \)[/tex] is:

[tex]\[ -\infty < x < \infty \][/tex]

Therefore, the correct answer is:
[tex]\[ -\infty < x < \infty \][/tex]