Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Which graph shows the solution set of the inequality [tex]2.9(x + 8) \ \textless \ 26.1[/tex]?

Sagot :

To determine which graph shows the solution set of the inequality [tex]\( 2.9(x + 8) < 26.1 \)[/tex], we can solve it step-by-step.

1. Distribute the 2.9 on the left-hand side:
[tex]\[ 2.9(x + 8) \Rightarrow 2.9 \cdot x + 2.9 \cdot 8 \Rightarrow 2.9x + 23.2 \][/tex]
So the inequality becomes:
[tex]\[ 2.9x + 23.2 < 26.1 \][/tex]

2. Isolate the [tex]\( x \)[/tex] term by subtracting 23.2 from both sides:
[tex]\[ 2.9x + 23.2 - 23.2 < 26.1 - 23.2 \][/tex]
Simplifying this gives:
[tex]\[ 2.9x < 2.9 \][/tex]

3. Solve for [tex]\( x \)[/tex] by dividing both sides by 2.9:
[tex]\[ \frac{2.9x}{2.9} < \frac{2.9}{2.9} \][/tex]
This simplifies to:
[tex]\[ x < 1 \][/tex]

The solution to the inequality is [tex]\( x < 1 \)[/tex].

To graph this solution on a number line:
- Draw a horizontal number line.
- Locate the number 1 on the number line.
- Shade the region to the left of 1 to represent all numbers less than 1.
- Place an open circle or hollow dot at 1 to show that 1 is not included in the solution.

In summary, the graph that correctly represents the solution set of the inequality [tex]\( 2.9(x + 8) < 26.1 \)[/tex] will have an open circle at [tex]\( x = 1 \)[/tex] and shading to the left, indicating all values of [tex]\( x \)[/tex] that are less than 1.