Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To graph the function [tex]\( y = 2 \tan \left( x + \frac{3\pi}{4} \right) \)[/tex], follow these steps:
### 1. Understand the Basic Tangent Function
First, recall the properties of the basic tangent function [tex]\( y = \tan(x) \)[/tex]:
- It has vertical asymptotes at [tex]\( x = \frac{\pi}{2} + k\pi \)[/tex] for any integer [tex]\( k \)[/tex].
- The function is periodic with period [tex]\( \pi \)[/tex].
- The tangent function has x-intercepts at [tex]\( x = k\pi \)[/tex].
### 2. Transformation of Tangent Function
Our function has two transformations applied to the basic tangent function:
1. Horizontal Shift: [tex]\( x + \frac{3\pi}{4} \)[/tex]
2. Vertical Scaling: Multiplying by 2.
### 3. Determine the Horizontal Shift
The term [tex]\( x + \frac{3\pi}{4} \)[/tex] indicates a horizontal shift. Specifically, this is a shift to the left by [tex]\( \frac{3\pi}{4} \)[/tex].
### 4. Establish Asymptotes
The vertical asymptotes of the function will be shifted according to the horizontal shift.
- Original vertical asymptotes for [tex]\( y = \tan(x) \)[/tex]: [tex]\( x = \frac{\pi}{2} + k\pi \)[/tex].
- Applying the shift [tex]\( x \rightarrow x + \frac{3\pi}{4} \)[/tex]: [tex]\( x + \frac{3\pi}{4} = \frac{\pi}{2} + k\pi \)[/tex].
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{\pi}{2} - \frac{3\pi}{4} + k\pi \][/tex]
[tex]\[ x = -\frac{\pi}{4} + k\pi \][/tex]
So the vertical asymptotes for our function are at [tex]\( x = -\frac{\pi}{4} + k\pi \)[/tex].
### 5. Determine the Period
The period of the tangent function is not changed by the horizontal shift, so the period remains [tex]\( \pi \)[/tex].
### 6. Vertical Scaling
The factor of 2 vertically scales the tangent function, stretching it by a factor of 2.
### 7. Sketching the Graph
1. Asymptotes: Draw vertical asymptotes at [tex]\( x = -\frac{\pi}{4} + k\pi \)[/tex]. For example, at [tex]\( -\frac{\pi}{4} \)[/tex], [tex]\( \frac{3\pi}{4} \)[/tex], [tex]\( \frac{7\pi}{4} \)[/tex], etc.
2. Tangent Behavior: Between each pair of consecutive asymptotes, draw the basic shape of the tangent function, but stretched vertically.
3. X-Intercepts: The x-intercepts will occur at the points halfway between asymptotes, which are [tex]\( x = -\frac{\pi}{4} + \frac{\pi}{2} + k\pi = \frac{\pi}{4} + k\pi \)[/tex].
Thus, the graph of [tex]\( y = 2 \tan \left( x + \frac{3\pi}{4} \right) \)[/tex] will consist of the basic tangent shape, stretched vertically by a factor of 2, with vertical asymptotes at [tex]\( x = -\frac{\pi}{4} + k\pi \)[/tex] and x-intercepts at [tex]\( x = \frac{\pi}{4} + k\pi \)[/tex].
### 1. Understand the Basic Tangent Function
First, recall the properties of the basic tangent function [tex]\( y = \tan(x) \)[/tex]:
- It has vertical asymptotes at [tex]\( x = \frac{\pi}{2} + k\pi \)[/tex] for any integer [tex]\( k \)[/tex].
- The function is periodic with period [tex]\( \pi \)[/tex].
- The tangent function has x-intercepts at [tex]\( x = k\pi \)[/tex].
### 2. Transformation of Tangent Function
Our function has two transformations applied to the basic tangent function:
1. Horizontal Shift: [tex]\( x + \frac{3\pi}{4} \)[/tex]
2. Vertical Scaling: Multiplying by 2.
### 3. Determine the Horizontal Shift
The term [tex]\( x + \frac{3\pi}{4} \)[/tex] indicates a horizontal shift. Specifically, this is a shift to the left by [tex]\( \frac{3\pi}{4} \)[/tex].
### 4. Establish Asymptotes
The vertical asymptotes of the function will be shifted according to the horizontal shift.
- Original vertical asymptotes for [tex]\( y = \tan(x) \)[/tex]: [tex]\( x = \frac{\pi}{2} + k\pi \)[/tex].
- Applying the shift [tex]\( x \rightarrow x + \frac{3\pi}{4} \)[/tex]: [tex]\( x + \frac{3\pi}{4} = \frac{\pi}{2} + k\pi \)[/tex].
Solving for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{\pi}{2} - \frac{3\pi}{4} + k\pi \][/tex]
[tex]\[ x = -\frac{\pi}{4} + k\pi \][/tex]
So the vertical asymptotes for our function are at [tex]\( x = -\frac{\pi}{4} + k\pi \)[/tex].
### 5. Determine the Period
The period of the tangent function is not changed by the horizontal shift, so the period remains [tex]\( \pi \)[/tex].
### 6. Vertical Scaling
The factor of 2 vertically scales the tangent function, stretching it by a factor of 2.
### 7. Sketching the Graph
1. Asymptotes: Draw vertical asymptotes at [tex]\( x = -\frac{\pi}{4} + k\pi \)[/tex]. For example, at [tex]\( -\frac{\pi}{4} \)[/tex], [tex]\( \frac{3\pi}{4} \)[/tex], [tex]\( \frac{7\pi}{4} \)[/tex], etc.
2. Tangent Behavior: Between each pair of consecutive asymptotes, draw the basic shape of the tangent function, but stretched vertically.
3. X-Intercepts: The x-intercepts will occur at the points halfway between asymptotes, which are [tex]\( x = -\frac{\pi}{4} + \frac{\pi}{2} + k\pi = \frac{\pi}{4} + k\pi \)[/tex].
Thus, the graph of [tex]\( y = 2 \tan \left( x + \frac{3\pi}{4} \right) \)[/tex] will consist of the basic tangent shape, stretched vertically by a factor of 2, with vertical asymptotes at [tex]\( x = -\frac{\pi}{4} + k\pi \)[/tex] and x-intercepts at [tex]\( x = \frac{\pi}{4} + k\pi \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.