Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine what restriction should be applied to [tex]\( y = \tan x \)[/tex] for [tex]\( y = \arctan x \)[/tex] to be defined, let's analyze the behavior and properties of the tangent and arctangent functions:
1. Tangent Function [tex]\( \tan x \)[/tex]:
- The tangent function, [tex]\( \tan x \)[/tex], is periodic with a period of [tex]\( \pi \)[/tex].
- It has vertical asymptotes at [tex]\( x = \pm \frac{\pi}{2} \)[/tex], meaning that [tex]\( \tan x \)[/tex] is undefined at these points.
- Its range is [tex]\( (-\infty, \infty) \)[/tex].
2. Arctangent Function [tex]\( \arctan x \)[/tex]:
- The arctangent function, [tex]\( \arctan x \)[/tex], is the inverse of the tangent function but only over a specific interval where the tangent function is one-to-one and covers all possible real numbers.
- For [tex]\( \arctan x \)[/tex] to be defined, the original function [tex]\( \tan x \)[/tex] needs to cover every possible [tex]\( y \)[/tex]-value without any repetitions or ambiguities.
- The interval that satisfies this condition for [tex]\( \tan x \)[/tex] is [tex]\( \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) \)[/tex]. However, for including all possible values (on the edges too), we consider [tex]\( \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \)[/tex].
3. Why the Interval Matters:
- Within the interval [tex]\( \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \)[/tex], the tangent function is continuous and strictly increasing.
- This makes the interval [tex]\( \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \)[/tex] ideal for defining the arctangent function, as it ensures that [tex]\( y = \tan x \)[/tex] is one-to-one and can map back uniquely to [tex]\( x \)[/tex] through [tex]\( y = \arctan x \)[/tex].
Applying this understanding:
- To define [tex]\( y = \arctan x \)[/tex] properly, the range of [tex]\( y = \tan x \)[/tex] should be restricted.
From these explanations, the correct restriction is:
[tex]\[ \text{Restrict the range to } \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \][/tex]
Thus, the appropriate option is:
- Restrict the range to [tex]\( \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \)[/tex]
1. Tangent Function [tex]\( \tan x \)[/tex]:
- The tangent function, [tex]\( \tan x \)[/tex], is periodic with a period of [tex]\( \pi \)[/tex].
- It has vertical asymptotes at [tex]\( x = \pm \frac{\pi}{2} \)[/tex], meaning that [tex]\( \tan x \)[/tex] is undefined at these points.
- Its range is [tex]\( (-\infty, \infty) \)[/tex].
2. Arctangent Function [tex]\( \arctan x \)[/tex]:
- The arctangent function, [tex]\( \arctan x \)[/tex], is the inverse of the tangent function but only over a specific interval where the tangent function is one-to-one and covers all possible real numbers.
- For [tex]\( \arctan x \)[/tex] to be defined, the original function [tex]\( \tan x \)[/tex] needs to cover every possible [tex]\( y \)[/tex]-value without any repetitions or ambiguities.
- The interval that satisfies this condition for [tex]\( \tan x \)[/tex] is [tex]\( \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) \)[/tex]. However, for including all possible values (on the edges too), we consider [tex]\( \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \)[/tex].
3. Why the Interval Matters:
- Within the interval [tex]\( \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \)[/tex], the tangent function is continuous and strictly increasing.
- This makes the interval [tex]\( \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \)[/tex] ideal for defining the arctangent function, as it ensures that [tex]\( y = \tan x \)[/tex] is one-to-one and can map back uniquely to [tex]\( x \)[/tex] through [tex]\( y = \arctan x \)[/tex].
Applying this understanding:
- To define [tex]\( y = \arctan x \)[/tex] properly, the range of [tex]\( y = \tan x \)[/tex] should be restricted.
From these explanations, the correct restriction is:
[tex]\[ \text{Restrict the range to } \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \][/tex]
Thus, the appropriate option is:
- Restrict the range to [tex]\( \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.