Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Which of the following shows the extraneous solution to the logarithmic equation [tex]\log_7(3x^3 + x) - \log_7(x) = 2[/tex]?

A. [tex]x = -16[/tex]
B. [tex]x = -4[/tex]
C. [tex]x = 4[/tex]
D. [tex]x = 16[/tex]


Sagot :

Sure, let's solve the equation [tex]\(\log_7(3x^3 + x) - \log_7(x) = 2\)[/tex] step-by-step and identify any extraneous solutions.

First, let's use the properties of logarithms to combine the logarithms:

[tex]\[ \log_7(3x^3 + x) - \log_7(x) = \log_7\left(\frac{3x^3 + x}{x}\right) = \log_7(3x^2 + 1) \][/tex]

So, the equation simplifies to:

[tex]\[ \log_7(3x^2 + 1) = 2 \][/tex]

To clear the logarithm, rewrite the equation in exponential form:

[tex]\[ 3x^2 + 1 = 7^2 \][/tex]

Since [tex]\(7^2 = 49\)[/tex], the equation becomes:

[tex]\[ 3x^2 + 1 = 49 \][/tex]

Now, solve for [tex]\(x\)[/tex]:

[tex]\[ 3x^2 + 1 = 49 \][/tex]
[tex]\[ 3x^2 = 48 \][/tex]
[tex]\[ x^2 = 16 \][/tex]
[tex]\[ x = \pm 4 \][/tex]

So, the potential solutions are [tex]\(x = 4\)[/tex] and [tex]\(x = -4\)[/tex].

Next, we should check for extraneous solutions. A solution is extraneous if it does not satisfy the original equation or if it makes the argument of any logarithm non-positive (since logarithms of non-positive numbers are undefined).

Let's check both solutions:

1. For [tex]\(x = 4\)[/tex]:
[tex]\[ \log_7(3(4)^3 + 4) - \log_7(4) = 2 \][/tex]
[tex]\[ \log_7(3 \cdot 64 + 4) - \log_7(4) = 2 \][/tex]
[tex]\[ \log_7(192 + 4) - \log_7(4) = 2 \][/tex]
[tex]\[ \log_7(196) - \log_7(4) = 2 \][/tex]
[tex]\[ \log_7\left(\frac{196}{4}\right) = 2 \][/tex]
[tex]\[ \log_7(49) = 2 \][/tex]
Since [tex]\(7^2 = 49\)[/tex], this is true, so [tex]\(x = 4\)[/tex] is a valid solution.

2. For [tex]\(x = -4\)[/tex]:

Check the arguments of the logarithms:
[tex]\[ \log_7(3(-4)^3 + (-4)) - \log_7(-4) \][/tex]
[tex]\[ 3(-64) + (-4) = -192 - 4 = -196 \][/tex]

Since [tex]\(\log_7(-196)\)[/tex] and [tex]\(\log_7(-4)\)[/tex] are undefined (logarithms of negative numbers are undefined in the real number domain), [tex]\(x = -4\)[/tex] is not a valid solution. Therefore, [tex]\(x = -4\)[/tex] is extraneous.

Considering this, the extraneous solution to the given logarithmic equation is:

[tex]\[ x = -4 \][/tex]