At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the values of the piecewise function at specific points, let's analyze the given function step-by-step and evaluate it based on the given conditions.
The piecewise function is defined as follows:
[tex]\[ \begin{aligned} +2x, & \quad \text{if } x \leq -1 \\ +\frac{3x}{2}, & \quad \text{if } -1 < x < 3 \\ \frac{1}{4}x, & \quad \text{if } x \geq 3 \end{aligned} \][/tex]
Now, we need to evaluate this function at [tex]\(x = -3\)[/tex], [tex]\(x = -1\)[/tex], and [tex]\(x = 3\)[/tex].
### 1. Evaluating [tex]\(f(-3)\)[/tex]
Since [tex]\(-3 \leq -1\)[/tex], we use the first piece of the function:
[tex]\[ f(x) = 2x \][/tex]
Plugging in [tex]\(x = -3\)[/tex]:
[tex]\[ f(-3) = 2(-3) = -6 \][/tex]
So, [tex]\(f(-3) = -6\)[/tex].
### 2. Evaluating [tex]\(f(-1)\)[/tex]
Since [tex]\(-1 \leq -1\)[/tex], we use the first piece of the function again:
[tex]\[ f(x) = 2x \][/tex]
Plugging in [tex]\(x = -1\)[/tex]:
[tex]\[ f(-1) = 2(-1) = -2 \][/tex]
So, [tex]\(f(-1) = -2\)[/tex].
### 3. Evaluating [tex]\(f(3)\)[/tex]
Since [tex]\(3 \geq 3\)[/tex], we use the third piece of the function:
[tex]\[ f(x) = \frac{1}{4}x \][/tex]
Plugging in [tex]\(x = 3\)[/tex]:
[tex]\[ f(3) = \frac{1}{4}(3) = 0.75 \][/tex]
So, [tex]\(f(3) = 0.75\)[/tex].
Therefore, the evaluated values of the function at the given points are:
[tex]\[ \begin{aligned} f(-3) &= -6 \\ f(-1) &= -2 \\ f(3) &= 0.75 \end{aligned} \][/tex]
The piecewise function is defined as follows:
[tex]\[ \begin{aligned} +2x, & \quad \text{if } x \leq -1 \\ +\frac{3x}{2}, & \quad \text{if } -1 < x < 3 \\ \frac{1}{4}x, & \quad \text{if } x \geq 3 \end{aligned} \][/tex]
Now, we need to evaluate this function at [tex]\(x = -3\)[/tex], [tex]\(x = -1\)[/tex], and [tex]\(x = 3\)[/tex].
### 1. Evaluating [tex]\(f(-3)\)[/tex]
Since [tex]\(-3 \leq -1\)[/tex], we use the first piece of the function:
[tex]\[ f(x) = 2x \][/tex]
Plugging in [tex]\(x = -3\)[/tex]:
[tex]\[ f(-3) = 2(-3) = -6 \][/tex]
So, [tex]\(f(-3) = -6\)[/tex].
### 2. Evaluating [tex]\(f(-1)\)[/tex]
Since [tex]\(-1 \leq -1\)[/tex], we use the first piece of the function again:
[tex]\[ f(x) = 2x \][/tex]
Plugging in [tex]\(x = -1\)[/tex]:
[tex]\[ f(-1) = 2(-1) = -2 \][/tex]
So, [tex]\(f(-1) = -2\)[/tex].
### 3. Evaluating [tex]\(f(3)\)[/tex]
Since [tex]\(3 \geq 3\)[/tex], we use the third piece of the function:
[tex]\[ f(x) = \frac{1}{4}x \][/tex]
Plugging in [tex]\(x = 3\)[/tex]:
[tex]\[ f(3) = \frac{1}{4}(3) = 0.75 \][/tex]
So, [tex]\(f(3) = 0.75\)[/tex].
Therefore, the evaluated values of the function at the given points are:
[tex]\[ \begin{aligned} f(-3) &= -6 \\ f(-1) &= -2 \\ f(3) &= 0.75 \end{aligned} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.