Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the values of the piecewise function at specific points, let's analyze the given function step-by-step and evaluate it based on the given conditions.
The piecewise function is defined as follows:
[tex]\[ \begin{aligned} +2x, & \quad \text{if } x \leq -1 \\ +\frac{3x}{2}, & \quad \text{if } -1 < x < 3 \\ \frac{1}{4}x, & \quad \text{if } x \geq 3 \end{aligned} \][/tex]
Now, we need to evaluate this function at [tex]\(x = -3\)[/tex], [tex]\(x = -1\)[/tex], and [tex]\(x = 3\)[/tex].
### 1. Evaluating [tex]\(f(-3)\)[/tex]
Since [tex]\(-3 \leq -1\)[/tex], we use the first piece of the function:
[tex]\[ f(x) = 2x \][/tex]
Plugging in [tex]\(x = -3\)[/tex]:
[tex]\[ f(-3) = 2(-3) = -6 \][/tex]
So, [tex]\(f(-3) = -6\)[/tex].
### 2. Evaluating [tex]\(f(-1)\)[/tex]
Since [tex]\(-1 \leq -1\)[/tex], we use the first piece of the function again:
[tex]\[ f(x) = 2x \][/tex]
Plugging in [tex]\(x = -1\)[/tex]:
[tex]\[ f(-1) = 2(-1) = -2 \][/tex]
So, [tex]\(f(-1) = -2\)[/tex].
### 3. Evaluating [tex]\(f(3)\)[/tex]
Since [tex]\(3 \geq 3\)[/tex], we use the third piece of the function:
[tex]\[ f(x) = \frac{1}{4}x \][/tex]
Plugging in [tex]\(x = 3\)[/tex]:
[tex]\[ f(3) = \frac{1}{4}(3) = 0.75 \][/tex]
So, [tex]\(f(3) = 0.75\)[/tex].
Therefore, the evaluated values of the function at the given points are:
[tex]\[ \begin{aligned} f(-3) &= -6 \\ f(-1) &= -2 \\ f(3) &= 0.75 \end{aligned} \][/tex]
The piecewise function is defined as follows:
[tex]\[ \begin{aligned} +2x, & \quad \text{if } x \leq -1 \\ +\frac{3x}{2}, & \quad \text{if } -1 < x < 3 \\ \frac{1}{4}x, & \quad \text{if } x \geq 3 \end{aligned} \][/tex]
Now, we need to evaluate this function at [tex]\(x = -3\)[/tex], [tex]\(x = -1\)[/tex], and [tex]\(x = 3\)[/tex].
### 1. Evaluating [tex]\(f(-3)\)[/tex]
Since [tex]\(-3 \leq -1\)[/tex], we use the first piece of the function:
[tex]\[ f(x) = 2x \][/tex]
Plugging in [tex]\(x = -3\)[/tex]:
[tex]\[ f(-3) = 2(-3) = -6 \][/tex]
So, [tex]\(f(-3) = -6\)[/tex].
### 2. Evaluating [tex]\(f(-1)\)[/tex]
Since [tex]\(-1 \leq -1\)[/tex], we use the first piece of the function again:
[tex]\[ f(x) = 2x \][/tex]
Plugging in [tex]\(x = -1\)[/tex]:
[tex]\[ f(-1) = 2(-1) = -2 \][/tex]
So, [tex]\(f(-1) = -2\)[/tex].
### 3. Evaluating [tex]\(f(3)\)[/tex]
Since [tex]\(3 \geq 3\)[/tex], we use the third piece of the function:
[tex]\[ f(x) = \frac{1}{4}x \][/tex]
Plugging in [tex]\(x = 3\)[/tex]:
[tex]\[ f(3) = \frac{1}{4}(3) = 0.75 \][/tex]
So, [tex]\(f(3) = 0.75\)[/tex].
Therefore, the evaluated values of the function at the given points are:
[tex]\[ \begin{aligned} f(-3) &= -6 \\ f(-1) &= -2 \\ f(3) &= 0.75 \end{aligned} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.