Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

What are the following values for the piecewise function?

[tex]\[
\begin{array}{l}
x \leq -1 \\
1 \ \textless \ x \ \textless \ 3 \\
x \geq 3
\end{array}
\][/tex]

[tex]\[
\begin{array}{l}
f(-3) = \square \\
f(-1) = \square \\
f(3) = \square
\end{array}
\][/tex]


Sagot :

Sure! Let's evaluate the piecewise function at the given points step-by-step.

The piecewise function in question is defined as:
[tex]\[ f(x) = \begin{cases} 5 & \text{if } x \leq -1 \\ 2x + 1 & \text{if } 1 < x < 3 \\ 7 & \text{if } x \geq 3 \end{cases} \][/tex]

Step 1: Evaluating [tex]\( f(-3) \)[/tex]
Since [tex]\( -3 \leq -1 \)[/tex], we use the first part of the piecewise function:
[tex]\[ f(-3) = 5 \][/tex]

Step 2: Evaluating [tex]\( f(-1) \)[/tex]
Since [tex]\( -1 \leq -1 \)[/tex], it falls under the same case as the previous step:
[tex]\[ f(-1) = 5 \][/tex]

Step 3: Evaluating [tex]\( f(3) \)[/tex]
Since [tex]\( 3 \geq 3 \)[/tex], we use the last part of the piecewise function:
[tex]\[ f(3) = 7 \][/tex]

Summarizing the evaluations:
[tex]\[ \begin{align*} f(-3) &= 5, \\ f(-1) &= 5, \\ f(3) &= 7. \end{align*} \][/tex]

Thus, the values are:

[tex]\[ \begin{array}{l} f(-3) = 5 \\ f(-1) = 5 \\ f(3) = 7 \end{array} \][/tex]