Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the problem, we assess the provided polynomial [tex]\( p(x) = x^4 + 5x^3 + ax^2 - 3x + 11 \)[/tex]. We are informed that the remainder when [tex]\( p(x) \)[/tex] is divided by [tex]\( x+1 \)[/tex] is 17.
Braulio’s approach:
Using synthetic division to find the value of [tex]\( a \)[/tex]:
1. Rewrite [tex]\( x+1 \)[/tex] as [tex]\( x - (-1) \)[/tex].
2. Use synthetic division by substituting [tex]\( x = -1 \)[/tex] into [tex]\( p(x) \)[/tex].
Zahra’s approach:
Using the remainder theorem to find the value of [tex]\( a \)[/tex]:
1. Substitute [tex]\( x = -1 \)[/tex] into the polynomial [tex]\( p(x) \)[/tex].
2. According to the remainder theorem, [tex]\( p(-1) \)[/tex] should equal the remainder, here known to be 17:
[tex]\[ p(-1) = (-1)^4 + 5(-1)^3 + a(-1)^2 - 3(-1) + 11 \][/tex]
Simplifying this:
[tex]\[ p(-1) = 1 - 5 + a + 3 + 11 \][/tex]
[tex]\[ p(-1) = 1 - 5 + 3 + 11 + a \][/tex]
[tex]\[ p(-1) = 10 + a \][/tex]
Since we know that [tex]\( p(-1) = 17 \)[/tex]:
[tex]\[ 10 + a = 17 \][/tex]
Solving for [tex]\( a \)[/tex]:
[tex]\[ a = 17 - 10 \][/tex]
[tex]\[ a = 7 \][/tex]
Both Braulio and Zahra found the value of [tex]\( a \)[/tex] correctly following their respective methods.
Given this, the correct statements would be:
- Braulio correctly found the value of [tex]\( a \)[/tex] because he used synthetic division.
- Zahra correctly found the value of [tex]\( a \)[/tex] because she used the remainder theorem.
Thus, the completed sentences should be:
Braulio correctly found the value of [tex]\( a \)[/tex] because he used synthetic division.
Zahra correctly found the value of [tex]\( a \)[/tex] because she used the remainder theorem.
Braulio’s approach:
Using synthetic division to find the value of [tex]\( a \)[/tex]:
1. Rewrite [tex]\( x+1 \)[/tex] as [tex]\( x - (-1) \)[/tex].
2. Use synthetic division by substituting [tex]\( x = -1 \)[/tex] into [tex]\( p(x) \)[/tex].
Zahra’s approach:
Using the remainder theorem to find the value of [tex]\( a \)[/tex]:
1. Substitute [tex]\( x = -1 \)[/tex] into the polynomial [tex]\( p(x) \)[/tex].
2. According to the remainder theorem, [tex]\( p(-1) \)[/tex] should equal the remainder, here known to be 17:
[tex]\[ p(-1) = (-1)^4 + 5(-1)^3 + a(-1)^2 - 3(-1) + 11 \][/tex]
Simplifying this:
[tex]\[ p(-1) = 1 - 5 + a + 3 + 11 \][/tex]
[tex]\[ p(-1) = 1 - 5 + 3 + 11 + a \][/tex]
[tex]\[ p(-1) = 10 + a \][/tex]
Since we know that [tex]\( p(-1) = 17 \)[/tex]:
[tex]\[ 10 + a = 17 \][/tex]
Solving for [tex]\( a \)[/tex]:
[tex]\[ a = 17 - 10 \][/tex]
[tex]\[ a = 7 \][/tex]
Both Braulio and Zahra found the value of [tex]\( a \)[/tex] correctly following their respective methods.
Given this, the correct statements would be:
- Braulio correctly found the value of [tex]\( a \)[/tex] because he used synthetic division.
- Zahra correctly found the value of [tex]\( a \)[/tex] because she used the remainder theorem.
Thus, the completed sentences should be:
Braulio correctly found the value of [tex]\( a \)[/tex] because he used synthetic division.
Zahra correctly found the value of [tex]\( a \)[/tex] because she used the remainder theorem.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.