Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve this problem, we need to understand the concept of exponential decay. The area of undeveloped land decreases at a constant percentage rate annually, which we can model using the formula for exponential decay:
[tex]\[ A = A_0 \times (1 - r)^t \][/tex]
where:
- [tex]\( A_0 \)[/tex] is the initial amount of undeveloped land,
- [tex]\( A \)[/tex] is the remaining amount of undeveloped land after time [tex]\( t \)[/tex],
- [tex]\( r \)[/tex] is the annual decay rate,
- [tex]\( t \)[/tex] is the time in years.
In this scenario:
- The initial amount of undeveloped land [tex]\( A_0 \)[/tex] is 3400 acres.
- The remaining amount of undeveloped land [tex]\( A \)[/tex] is 900 acres.
- The annual decay rate [tex]\( r \)[/tex] is 17.3%, which can be represented as a decimal: [tex]\( 0.173 \)[/tex].
Substituting these values into the formula, we get:
[tex]\[ 900 = 3400 \times (1 - 0.173)^t \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ 900 = 3400 \times (0.827)^t \][/tex]
This matches equation A:
[tex]\[ 900 = 3400(0.827)^t \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{A} \][/tex]
[tex]\[ A = A_0 \times (1 - r)^t \][/tex]
where:
- [tex]\( A_0 \)[/tex] is the initial amount of undeveloped land,
- [tex]\( A \)[/tex] is the remaining amount of undeveloped land after time [tex]\( t \)[/tex],
- [tex]\( r \)[/tex] is the annual decay rate,
- [tex]\( t \)[/tex] is the time in years.
In this scenario:
- The initial amount of undeveloped land [tex]\( A_0 \)[/tex] is 3400 acres.
- The remaining amount of undeveloped land [tex]\( A \)[/tex] is 900 acres.
- The annual decay rate [tex]\( r \)[/tex] is 17.3%, which can be represented as a decimal: [tex]\( 0.173 \)[/tex].
Substituting these values into the formula, we get:
[tex]\[ 900 = 3400 \times (1 - 0.173)^t \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ 900 = 3400 \times (0.827)^t \][/tex]
This matches equation A:
[tex]\[ 900 = 3400(0.827)^t \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{A} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.