Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve this problem, we need to understand the concept of exponential decay. The area of undeveloped land decreases at a constant percentage rate annually, which we can model using the formula for exponential decay:
[tex]\[ A = A_0 \times (1 - r)^t \][/tex]
where:
- [tex]\( A_0 \)[/tex] is the initial amount of undeveloped land,
- [tex]\( A \)[/tex] is the remaining amount of undeveloped land after time [tex]\( t \)[/tex],
- [tex]\( r \)[/tex] is the annual decay rate,
- [tex]\( t \)[/tex] is the time in years.
In this scenario:
- The initial amount of undeveloped land [tex]\( A_0 \)[/tex] is 3400 acres.
- The remaining amount of undeveloped land [tex]\( A \)[/tex] is 900 acres.
- The annual decay rate [tex]\( r \)[/tex] is 17.3%, which can be represented as a decimal: [tex]\( 0.173 \)[/tex].
Substituting these values into the formula, we get:
[tex]\[ 900 = 3400 \times (1 - 0.173)^t \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ 900 = 3400 \times (0.827)^t \][/tex]
This matches equation A:
[tex]\[ 900 = 3400(0.827)^t \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{A} \][/tex]
[tex]\[ A = A_0 \times (1 - r)^t \][/tex]
where:
- [tex]\( A_0 \)[/tex] is the initial amount of undeveloped land,
- [tex]\( A \)[/tex] is the remaining amount of undeveloped land after time [tex]\( t \)[/tex],
- [tex]\( r \)[/tex] is the annual decay rate,
- [tex]\( t \)[/tex] is the time in years.
In this scenario:
- The initial amount of undeveloped land [tex]\( A_0 \)[/tex] is 3400 acres.
- The remaining amount of undeveloped land [tex]\( A \)[/tex] is 900 acres.
- The annual decay rate [tex]\( r \)[/tex] is 17.3%, which can be represented as a decimal: [tex]\( 0.173 \)[/tex].
Substituting these values into the formula, we get:
[tex]\[ 900 = 3400 \times (1 - 0.173)^t \][/tex]
Simplifying the expression inside the parentheses:
[tex]\[ 900 = 3400 \times (0.827)^t \][/tex]
This matches equation A:
[tex]\[ 900 = 3400(0.827)^t \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{A} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.