Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Choose the correct answer from the given alternatives and write the letter of your choice on the provided line.

If the slope of the line passing through the points [tex]P (2a^2 - 2, 5)[/tex] and [tex]Q (1, 3a - 4)[/tex] is zero, then the possible value(s) of [tex]a[/tex] is (are):

A. -3 and 3
B. [tex]$\pm 1$[/tex]
C. 3
D. 1


Sagot :

Sure, let's solve this question step-by-step:

Given points are [tex]\(P \left(2a^2 - 2, 5 \right) \)[/tex] and [tex]\( Q (1, 3a - 4) \)[/tex].

The slope of the line passing through two points [tex]\((x_1, y_1) \)[/tex] and [tex]\((x_2, y_2) \)[/tex] is given by:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

In this case, [tex]\((x_1, y_1) = (2a^2 - 2, 5) \)[/tex] and [tex]\((x_2, y_2) = (1, 3a - 4) \)[/tex].

Since the slope is given to be zero, the numerator of the slope equation must be zero:
[tex]\[ \frac{(3a - 4) - 5}{1 - (2a^2 - 2)} = 0 \][/tex]

Simplifying this, we get the equation:
[tex]\[ (3a - 4) - 5 = 0 \][/tex]

This can be further simplified as:
[tex]\[ 3a - 4 - 5 = 0 \][/tex]

[tex]\[ 3a - 9 = 0 \][/tex]

Solving for [tex]\(a\)[/tex]:
[tex]\[ 3a = 9 \][/tex]

[tex]\[ a = 3 \][/tex]

Therefore, the possible value of [tex]\(a\)[/tex] is:

[tex]\[ \boxed{3} \][/tex]

So, the correct answer is:

C. 3