At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To answer the question, let's break it down into two parts:
### Part 1: Calculating Linear Expansivity of the Metal Rod
Given:
- Initial length of the rod [tex]\( L_0 = 40 \, \text{cm} \)[/tex]
- Final length of the rod [tex]\( L_1 = 40.05 \, \text{cm} \)[/tex]
- Initial temperature [tex]\( T_0 = 0^\circ \text{C} \)[/tex]
- Final temperature [tex]\( T_1 = 45^\circ \text{C} \)[/tex]
The change in length of the rod is:
[tex]\[ \Delta L = L_1 - L_0 = 40.05 \, \text{cm} - 40 \, \text{cm} = 0.05 \, \text{cm} \][/tex]
The change in temperature is:
[tex]\[ \Delta T = T_1 - T_0 = 45^\circ \text{C} - 0^\circ \text{C} = 45 \, \text{K} \][/tex]
Linear expansivity ([tex]\(\alpha\)[/tex]) is given by the formula:
[tex]\[ \alpha = \frac{\Delta L}{L_0 \cdot \Delta T} \][/tex]
Substituting the known values:
[tex]\[ \alpha = \frac{0.05 \, \text{cm}}{40 \, \text{cm} \cdot 45 \, \text{K}} \][/tex]
[tex]\[ \alpha = \frac{0.05}{40 \times 45} \][/tex]
[tex]\[ \alpha = \frac{0.05}{1800} \][/tex]
[tex]\[ \alpha = \frac{5 \times 10^{-2}}{1.8 \times 10^3} \][/tex]
[tex]\[ \alpha = \frac{5}{1800} \times 10^{-2} \][/tex]
[tex]\[ \alpha = \frac{1}{360} \times 10^{-2} \][/tex]
[tex]\[ \alpha = \frac{1}{3.6 \times 10^2} \times 10^{-2} \][/tex]
[tex]\[ \alpha = \frac{1}{3.6} \times 10^{-5} \][/tex]
[tex]\[ \alpha \approx 2.78 \times 10^{-5} \, \text{K}^{-1} \][/tex]
### Part 2: Calculating P.d Across the Terminal
Given:
- Electromotive force (E.M.F): [tex]\( \mathcal{E} = 12 \, \text{V} \)[/tex]
- Internal resistance: [tex]\( r = 2 \, \Omega \)[/tex]
- External resistance: [tex]\( R = 8 \, \Omega \)[/tex]
First, calculate the total resistance in the circuit:
[tex]\[ R_{\text{total}} = r + R = 2 \Omega + 8 \Omega = 10 \Omega \][/tex]
Next, use Ohm's Law to calculate the current ([tex]\(I\)[/tex]) flowing through the circuit:
[tex]\[ I = \frac{\mathcal{E}}{R_{\text{total}}} = \frac{12 \, \text{V}}{10 \, \Omega} = 1.2 \, \text{A} \][/tex]
Finally, calculate the potential difference (P.d) across the terminal using the formula:
[tex]\[ V_{\text{terminal}} = \mathcal{E} - I \cdot r = 12 \, \text{V} - 1.2 \, \text{A} \times 2 \, \Omega = 12 \, \text{V} - 2.4 \, \text{V} = 9.6 \, \text{V} \][/tex]
Thus, the P.d across the terminal is:
[tex]\[ \boxed{9.6 \, \text{V}} \][/tex]
The correct answer for the second problem is: B. [tex]\( 9.6 \, \text{V} \)[/tex]
### Part 1: Calculating Linear Expansivity of the Metal Rod
Given:
- Initial length of the rod [tex]\( L_0 = 40 \, \text{cm} \)[/tex]
- Final length of the rod [tex]\( L_1 = 40.05 \, \text{cm} \)[/tex]
- Initial temperature [tex]\( T_0 = 0^\circ \text{C} \)[/tex]
- Final temperature [tex]\( T_1 = 45^\circ \text{C} \)[/tex]
The change in length of the rod is:
[tex]\[ \Delta L = L_1 - L_0 = 40.05 \, \text{cm} - 40 \, \text{cm} = 0.05 \, \text{cm} \][/tex]
The change in temperature is:
[tex]\[ \Delta T = T_1 - T_0 = 45^\circ \text{C} - 0^\circ \text{C} = 45 \, \text{K} \][/tex]
Linear expansivity ([tex]\(\alpha\)[/tex]) is given by the formula:
[tex]\[ \alpha = \frac{\Delta L}{L_0 \cdot \Delta T} \][/tex]
Substituting the known values:
[tex]\[ \alpha = \frac{0.05 \, \text{cm}}{40 \, \text{cm} \cdot 45 \, \text{K}} \][/tex]
[tex]\[ \alpha = \frac{0.05}{40 \times 45} \][/tex]
[tex]\[ \alpha = \frac{0.05}{1800} \][/tex]
[tex]\[ \alpha = \frac{5 \times 10^{-2}}{1.8 \times 10^3} \][/tex]
[tex]\[ \alpha = \frac{5}{1800} \times 10^{-2} \][/tex]
[tex]\[ \alpha = \frac{1}{360} \times 10^{-2} \][/tex]
[tex]\[ \alpha = \frac{1}{3.6 \times 10^2} \times 10^{-2} \][/tex]
[tex]\[ \alpha = \frac{1}{3.6} \times 10^{-5} \][/tex]
[tex]\[ \alpha \approx 2.78 \times 10^{-5} \, \text{K}^{-1} \][/tex]
### Part 2: Calculating P.d Across the Terminal
Given:
- Electromotive force (E.M.F): [tex]\( \mathcal{E} = 12 \, \text{V} \)[/tex]
- Internal resistance: [tex]\( r = 2 \, \Omega \)[/tex]
- External resistance: [tex]\( R = 8 \, \Omega \)[/tex]
First, calculate the total resistance in the circuit:
[tex]\[ R_{\text{total}} = r + R = 2 \Omega + 8 \Omega = 10 \Omega \][/tex]
Next, use Ohm's Law to calculate the current ([tex]\(I\)[/tex]) flowing through the circuit:
[tex]\[ I = \frac{\mathcal{E}}{R_{\text{total}}} = \frac{12 \, \text{V}}{10 \, \Omega} = 1.2 \, \text{A} \][/tex]
Finally, calculate the potential difference (P.d) across the terminal using the formula:
[tex]\[ V_{\text{terminal}} = \mathcal{E} - I \cdot r = 12 \, \text{V} - 1.2 \, \text{A} \times 2 \, \Omega = 12 \, \text{V} - 2.4 \, \text{V} = 9.6 \, \text{V} \][/tex]
Thus, the P.d across the terminal is:
[tex]\[ \boxed{9.6 \, \text{V}} \][/tex]
The correct answer for the second problem is: B. [tex]\( 9.6 \, \text{V} \)[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.