At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

2. Which of the following is neither parallel nor perpendicular to the line [tex]x + 2y = 1[/tex]?

A. [tex]y = 2x - 1[/tex]
B. [tex]x = 2y - 1[/tex]
C. [tex]y = -\frac{1}{2}x + 3[/tex]

3. If the lines [tex]y = ax - 3[/tex] and [tex]y = \frac{3}{a}x[/tex] are parallel, then the set of values of [tex]a[/tex] is:


Sagot :

Sure, let's work through each part of the question step-by-step.

### Part 1: Identifying which line is neither parallel nor perpendicular to [tex]\(x + 2y = 1\)[/tex]
1. Find the slope of the given line [tex]\(x + 2y = 1\)[/tex]:
- Rearrange this equation into slope-intercept form [tex]\(y = mx + b\)[/tex].
[tex]\[ x + 2y = 1 \\ 2y = -x + 1 \\ y = -\frac{1}{2}x + \frac{1}{2} \quad \text{(Slope \(m\) is \(-\frac{1}{2}\))} \][/tex]

2. Identify the slopes of the other lines:
- Line [tex]\(A: y = 2x - 1\)[/tex]:
[tex]\[ \text{The slope (\(m_A\)) is } 2 \][/tex]
- Line [tex]\(B: x = 2y - 1\)[/tex]:
- Rearrange into slope-intercept form [tex]\(y = mx + b\)[/tex]:
[tex]\[ x = 2y - 1 \\ 2y = x + 1 \\ y = \frac{1}{2}x + \frac{1}{2} \quad \text{(Slope \(m_B\) is \(\frac{1}{2}\))} \][/tex]
- Line [tex]\(C: y = -\frac{1}{2}x + 3\)[/tex]:
[tex]\[ \text{The slope (\(m_C\)) is } -\frac{1}{2} \][/tex]

3. Determine which lines are parallel or perpendicular to the given line [tex]\(x + 2y = 1\)[/tex]:
- Lines are parallel if their slopes are equal.
- Lines are perpendicular if the product of their slopes is [tex]\(-1\)[/tex].

4. Evaluate relationships:
- Given line's slope: [tex]\(-\frac{1}{2}\)[/tex].
- Line [tex]\(A\)[/tex] with slope [tex]\(2\)[/tex]:
[tex]\[ \text{Not parallel and not perpendicular since } 2 \times (-\frac{1}{2}) = -1 \quad \text{(perpendicular)} \][/tex]
- Line [tex]\(B\)[/tex] with slope [tex]\( \frac{1}{2} \)[/tex]:
[tex]\[ \text{Not parallel and not perpendicular since } \frac{1}{2} \neq -\frac{1}{2} \quad \text{(not perpendicular, and not equal to \(-\frac{1}{2}\))} \][/tex]
- Line [tex]\(C\)[/tex] with slope [tex]\(-\frac{1}{2}\)[/tex]:
[tex]\[ \text{Parallel because } -\frac{1}{2} = -\frac{1}{2} \][/tex]

Therefore, the line from options [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex] which is neither parallel nor perpendicular to the given line [tex]\(x+2y=1\)[/tex] is:
[tex]\[ \boxed{B: x = 2y - 1} \][/tex]

### Part 2: Finding values of [tex]\(a\)[/tex] for lines to be parallel
1. Given lines [tex]\(y = ax - 3\)[/tex] and [tex]\(y = \frac{3}{a}x\)[/tex]:
- For these lines to be parallel, their slopes must be equal:.
[tex]\[ \text{Slopes of } y = ax - 3 \quad \text{and} \quad y = \frac{3}{a}x \\ \text{are } a \text{ and } \frac{3}{a} \text{ respectively. They must be equal:} \][/tex]
[tex]\[ a = \frac{3}{a} \][/tex]

2. Solve for [tex]\(a\)[/tex]:
- Multiply both sides by [tex]\(a\)[/tex]:
[tex]\[ a^2 = 3 \][/tex]
- Take the square root of both sides:
[tex]\[ a = \sqrt{3} \quad \text{or} \quad a = -\sqrt{3} \][/tex]

Therefore, the set of values of [tex]\(a\)[/tex] such that the two lines are parallel is:
[tex]\[ \boxed{\left\{\sqrt{3}, -\sqrt{3}\right\}} \][/tex]