Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure, let's work through each part of the question step-by-step.
### Part 1: Identifying which line is neither parallel nor perpendicular to [tex]\(x + 2y = 1\)[/tex]
1. Find the slope of the given line [tex]\(x + 2y = 1\)[/tex]:
- Rearrange this equation into slope-intercept form [tex]\(y = mx + b\)[/tex].
[tex]\[ x + 2y = 1 \\ 2y = -x + 1 \\ y = -\frac{1}{2}x + \frac{1}{2} \quad \text{(Slope \(m\) is \(-\frac{1}{2}\))} \][/tex]
2. Identify the slopes of the other lines:
- Line [tex]\(A: y = 2x - 1\)[/tex]:
[tex]\[ \text{The slope (\(m_A\)) is } 2 \][/tex]
- Line [tex]\(B: x = 2y - 1\)[/tex]:
- Rearrange into slope-intercept form [tex]\(y = mx + b\)[/tex]:
[tex]\[ x = 2y - 1 \\ 2y = x + 1 \\ y = \frac{1}{2}x + \frac{1}{2} \quad \text{(Slope \(m_B\) is \(\frac{1}{2}\))} \][/tex]
- Line [tex]\(C: y = -\frac{1}{2}x + 3\)[/tex]:
[tex]\[ \text{The slope (\(m_C\)) is } -\frac{1}{2} \][/tex]
3. Determine which lines are parallel or perpendicular to the given line [tex]\(x + 2y = 1\)[/tex]:
- Lines are parallel if their slopes are equal.
- Lines are perpendicular if the product of their slopes is [tex]\(-1\)[/tex].
4. Evaluate relationships:
- Given line's slope: [tex]\(-\frac{1}{2}\)[/tex].
- Line [tex]\(A\)[/tex] with slope [tex]\(2\)[/tex]:
[tex]\[ \text{Not parallel and not perpendicular since } 2 \times (-\frac{1}{2}) = -1 \quad \text{(perpendicular)} \][/tex]
- Line [tex]\(B\)[/tex] with slope [tex]\( \frac{1}{2} \)[/tex]:
[tex]\[ \text{Not parallel and not perpendicular since } \frac{1}{2} \neq -\frac{1}{2} \quad \text{(not perpendicular, and not equal to \(-\frac{1}{2}\))} \][/tex]
- Line [tex]\(C\)[/tex] with slope [tex]\(-\frac{1}{2}\)[/tex]:
[tex]\[ \text{Parallel because } -\frac{1}{2} = -\frac{1}{2} \][/tex]
Therefore, the line from options [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex] which is neither parallel nor perpendicular to the given line [tex]\(x+2y=1\)[/tex] is:
[tex]\[ \boxed{B: x = 2y - 1} \][/tex]
### Part 2: Finding values of [tex]\(a\)[/tex] for lines to be parallel
1. Given lines [tex]\(y = ax - 3\)[/tex] and [tex]\(y = \frac{3}{a}x\)[/tex]:
- For these lines to be parallel, their slopes must be equal:.
[tex]\[ \text{Slopes of } y = ax - 3 \quad \text{and} \quad y = \frac{3}{a}x \\ \text{are } a \text{ and } \frac{3}{a} \text{ respectively. They must be equal:} \][/tex]
[tex]\[ a = \frac{3}{a} \][/tex]
2. Solve for [tex]\(a\)[/tex]:
- Multiply both sides by [tex]\(a\)[/tex]:
[tex]\[ a^2 = 3 \][/tex]
- Take the square root of both sides:
[tex]\[ a = \sqrt{3} \quad \text{or} \quad a = -\sqrt{3} \][/tex]
Therefore, the set of values of [tex]\(a\)[/tex] such that the two lines are parallel is:
[tex]\[ \boxed{\left\{\sqrt{3}, -\sqrt{3}\right\}} \][/tex]
### Part 1: Identifying which line is neither parallel nor perpendicular to [tex]\(x + 2y = 1\)[/tex]
1. Find the slope of the given line [tex]\(x + 2y = 1\)[/tex]:
- Rearrange this equation into slope-intercept form [tex]\(y = mx + b\)[/tex].
[tex]\[ x + 2y = 1 \\ 2y = -x + 1 \\ y = -\frac{1}{2}x + \frac{1}{2} \quad \text{(Slope \(m\) is \(-\frac{1}{2}\))} \][/tex]
2. Identify the slopes of the other lines:
- Line [tex]\(A: y = 2x - 1\)[/tex]:
[tex]\[ \text{The slope (\(m_A\)) is } 2 \][/tex]
- Line [tex]\(B: x = 2y - 1\)[/tex]:
- Rearrange into slope-intercept form [tex]\(y = mx + b\)[/tex]:
[tex]\[ x = 2y - 1 \\ 2y = x + 1 \\ y = \frac{1}{2}x + \frac{1}{2} \quad \text{(Slope \(m_B\) is \(\frac{1}{2}\))} \][/tex]
- Line [tex]\(C: y = -\frac{1}{2}x + 3\)[/tex]:
[tex]\[ \text{The slope (\(m_C\)) is } -\frac{1}{2} \][/tex]
3. Determine which lines are parallel or perpendicular to the given line [tex]\(x + 2y = 1\)[/tex]:
- Lines are parallel if their slopes are equal.
- Lines are perpendicular if the product of their slopes is [tex]\(-1\)[/tex].
4. Evaluate relationships:
- Given line's slope: [tex]\(-\frac{1}{2}\)[/tex].
- Line [tex]\(A\)[/tex] with slope [tex]\(2\)[/tex]:
[tex]\[ \text{Not parallel and not perpendicular since } 2 \times (-\frac{1}{2}) = -1 \quad \text{(perpendicular)} \][/tex]
- Line [tex]\(B\)[/tex] with slope [tex]\( \frac{1}{2} \)[/tex]:
[tex]\[ \text{Not parallel and not perpendicular since } \frac{1}{2} \neq -\frac{1}{2} \quad \text{(not perpendicular, and not equal to \(-\frac{1}{2}\))} \][/tex]
- Line [tex]\(C\)[/tex] with slope [tex]\(-\frac{1}{2}\)[/tex]:
[tex]\[ \text{Parallel because } -\frac{1}{2} = -\frac{1}{2} \][/tex]
Therefore, the line from options [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex] which is neither parallel nor perpendicular to the given line [tex]\(x+2y=1\)[/tex] is:
[tex]\[ \boxed{B: x = 2y - 1} \][/tex]
### Part 2: Finding values of [tex]\(a\)[/tex] for lines to be parallel
1. Given lines [tex]\(y = ax - 3\)[/tex] and [tex]\(y = \frac{3}{a}x\)[/tex]:
- For these lines to be parallel, their slopes must be equal:.
[tex]\[ \text{Slopes of } y = ax - 3 \quad \text{and} \quad y = \frac{3}{a}x \\ \text{are } a \text{ and } \frac{3}{a} \text{ respectively. They must be equal:} \][/tex]
[tex]\[ a = \frac{3}{a} \][/tex]
2. Solve for [tex]\(a\)[/tex]:
- Multiply both sides by [tex]\(a\)[/tex]:
[tex]\[ a^2 = 3 \][/tex]
- Take the square root of both sides:
[tex]\[ a = \sqrt{3} \quad \text{or} \quad a = -\sqrt{3} \][/tex]
Therefore, the set of values of [tex]\(a\)[/tex] such that the two lines are parallel is:
[tex]\[ \boxed{\left\{\sqrt{3}, -\sqrt{3}\right\}} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.