Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To simplify the expression [tex]\( 2x^2 + y^2 + 8z^2 - 2\sqrt{2}xy + 4\sqrt{2}yz - 8xz \)[/tex], follow these steps:
1. Rewrite Original Expression:
Start with the given expression:
[tex]\[ 2x^2 + y^2 + 8z^2 - 2\sqrt{2}xy + 4\sqrt{2}yz - 8xz \][/tex]
2. Group Like Terms:
Group terms that contain similar variable combinations and coefficients:
[tex]\[ 2x^2 - 2\sqrt{2}xy - 8xz + y^2 + 4\sqrt{2}yz + 8z^2 \][/tex]
3. Examine Quadratic Nature:
Notice that this expression is a quadratic form in variables [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex].
4. Expand Each Term's Contribution:
Clearly write each squared term and cross-product term:
- [tex]\(2x^2\)[/tex]: The term with [tex]\(x^2\)[/tex].
- [tex]\(y^2\)[/tex]: The term with [tex]\(y^2\)[/tex].
- [tex]\(8z^2\)[/tex]: The term with [tex]\(z^2\)[/tex].
- [tex]\(-2\sqrt{2}xy\)[/tex]: The cross-product term between [tex]\(x\)[/tex] and [tex]\(y\)[/tex].
- [tex]\(4\sqrt{2}yz\)[/tex]: The cross-product term between [tex]\(y\)[/tex] and [tex]\(z\)[/tex].
- [tex]\(-8xz\)[/tex]: The cross-product term between [tex]\(x\)[/tex] and [tex]\(z\)[/tex].
5. Combine with Identified Constants and Cross Terms:
Collect the terms and ensure they are correctly organized:
[tex]\[ 2x^2 - 2\sqrt{2}xy - 8xz + y^2 + 4\sqrt{2}yz + 8z^2 \][/tex]
6. Final Expression:
Confirm that there are no further simplifications available. Each term is already simplified.
Therefore, the expression simplified and grouped appropriately is:
[tex]\[ 2x^2 - 2\sqrt{2}xy - 8xz + y^2 + 4\sqrt{2}yz + 8z^2 \][/tex]
This conforms to the structured form for such quadratic expressions with mixed variable terms.
1. Rewrite Original Expression:
Start with the given expression:
[tex]\[ 2x^2 + y^2 + 8z^2 - 2\sqrt{2}xy + 4\sqrt{2}yz - 8xz \][/tex]
2. Group Like Terms:
Group terms that contain similar variable combinations and coefficients:
[tex]\[ 2x^2 - 2\sqrt{2}xy - 8xz + y^2 + 4\sqrt{2}yz + 8z^2 \][/tex]
3. Examine Quadratic Nature:
Notice that this expression is a quadratic form in variables [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex].
4. Expand Each Term's Contribution:
Clearly write each squared term and cross-product term:
- [tex]\(2x^2\)[/tex]: The term with [tex]\(x^2\)[/tex].
- [tex]\(y^2\)[/tex]: The term with [tex]\(y^2\)[/tex].
- [tex]\(8z^2\)[/tex]: The term with [tex]\(z^2\)[/tex].
- [tex]\(-2\sqrt{2}xy\)[/tex]: The cross-product term between [tex]\(x\)[/tex] and [tex]\(y\)[/tex].
- [tex]\(4\sqrt{2}yz\)[/tex]: The cross-product term between [tex]\(y\)[/tex] and [tex]\(z\)[/tex].
- [tex]\(-8xz\)[/tex]: The cross-product term between [tex]\(x\)[/tex] and [tex]\(z\)[/tex].
5. Combine with Identified Constants and Cross Terms:
Collect the terms and ensure they are correctly organized:
[tex]\[ 2x^2 - 2\sqrt{2}xy - 8xz + y^2 + 4\sqrt{2}yz + 8z^2 \][/tex]
6. Final Expression:
Confirm that there are no further simplifications available. Each term is already simplified.
Therefore, the expression simplified and grouped appropriately is:
[tex]\[ 2x^2 - 2\sqrt{2}xy - 8xz + y^2 + 4\sqrt{2}yz + 8z^2 \][/tex]
This conforms to the structured form for such quadratic expressions with mixed variable terms.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.