Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To simplify the expression [tex]\( 2x^2 + y^2 + 8z^2 - 2\sqrt{2}xy + 4\sqrt{2}yz - 8xz \)[/tex], follow these steps:
1. Rewrite Original Expression:
Start with the given expression:
[tex]\[ 2x^2 + y^2 + 8z^2 - 2\sqrt{2}xy + 4\sqrt{2}yz - 8xz \][/tex]
2. Group Like Terms:
Group terms that contain similar variable combinations and coefficients:
[tex]\[ 2x^2 - 2\sqrt{2}xy - 8xz + y^2 + 4\sqrt{2}yz + 8z^2 \][/tex]
3. Examine Quadratic Nature:
Notice that this expression is a quadratic form in variables [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex].
4. Expand Each Term's Contribution:
Clearly write each squared term and cross-product term:
- [tex]\(2x^2\)[/tex]: The term with [tex]\(x^2\)[/tex].
- [tex]\(y^2\)[/tex]: The term with [tex]\(y^2\)[/tex].
- [tex]\(8z^2\)[/tex]: The term with [tex]\(z^2\)[/tex].
- [tex]\(-2\sqrt{2}xy\)[/tex]: The cross-product term between [tex]\(x\)[/tex] and [tex]\(y\)[/tex].
- [tex]\(4\sqrt{2}yz\)[/tex]: The cross-product term between [tex]\(y\)[/tex] and [tex]\(z\)[/tex].
- [tex]\(-8xz\)[/tex]: The cross-product term between [tex]\(x\)[/tex] and [tex]\(z\)[/tex].
5. Combine with Identified Constants and Cross Terms:
Collect the terms and ensure they are correctly organized:
[tex]\[ 2x^2 - 2\sqrt{2}xy - 8xz + y^2 + 4\sqrt{2}yz + 8z^2 \][/tex]
6. Final Expression:
Confirm that there are no further simplifications available. Each term is already simplified.
Therefore, the expression simplified and grouped appropriately is:
[tex]\[ 2x^2 - 2\sqrt{2}xy - 8xz + y^2 + 4\sqrt{2}yz + 8z^2 \][/tex]
This conforms to the structured form for such quadratic expressions with mixed variable terms.
1. Rewrite Original Expression:
Start with the given expression:
[tex]\[ 2x^2 + y^2 + 8z^2 - 2\sqrt{2}xy + 4\sqrt{2}yz - 8xz \][/tex]
2. Group Like Terms:
Group terms that contain similar variable combinations and coefficients:
[tex]\[ 2x^2 - 2\sqrt{2}xy - 8xz + y^2 + 4\sqrt{2}yz + 8z^2 \][/tex]
3. Examine Quadratic Nature:
Notice that this expression is a quadratic form in variables [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex].
4. Expand Each Term's Contribution:
Clearly write each squared term and cross-product term:
- [tex]\(2x^2\)[/tex]: The term with [tex]\(x^2\)[/tex].
- [tex]\(y^2\)[/tex]: The term with [tex]\(y^2\)[/tex].
- [tex]\(8z^2\)[/tex]: The term with [tex]\(z^2\)[/tex].
- [tex]\(-2\sqrt{2}xy\)[/tex]: The cross-product term between [tex]\(x\)[/tex] and [tex]\(y\)[/tex].
- [tex]\(4\sqrt{2}yz\)[/tex]: The cross-product term between [tex]\(y\)[/tex] and [tex]\(z\)[/tex].
- [tex]\(-8xz\)[/tex]: The cross-product term between [tex]\(x\)[/tex] and [tex]\(z\)[/tex].
5. Combine with Identified Constants and Cross Terms:
Collect the terms and ensure they are correctly organized:
[tex]\[ 2x^2 - 2\sqrt{2}xy - 8xz + y^2 + 4\sqrt{2}yz + 8z^2 \][/tex]
6. Final Expression:
Confirm that there are no further simplifications available. Each term is already simplified.
Therefore, the expression simplified and grouped appropriately is:
[tex]\[ 2x^2 - 2\sqrt{2}xy - 8xz + y^2 + 4\sqrt{2}yz + 8z^2 \][/tex]
This conforms to the structured form for such quadratic expressions with mixed variable terms.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.