Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's solve the problem step-by-step.
### 1. Find the Discriminant
The given quadratic equation is:
[tex]\[ 2x^2 - 5x + 7 = 0 \][/tex]
The general form of a quadratic equation is:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
where [tex]\( a = 2 \)[/tex], [tex]\( b = -5 \)[/tex], and [tex]\( c = 7 \)[/tex].
The discriminant ([tex]\( \Delta \)[/tex]) of a quadratic equation is given by the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substitute the given values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the discriminant formula:
[tex]\[ \Delta = (-5)^2 - 4 \cdot 2 \cdot 7 \][/tex]
Calculate each term:
[tex]\[ \Delta = 25 - 4 \cdot 2 \cdot 7 \][/tex]
[tex]\[ \Delta = 25 - 56 \][/tex]
[tex]\[ \Delta = -31 \][/tex]
So, the discriminant is [tex]\( \Delta = -31 \)[/tex].
### 2. Describe the Roots and Explain Your Reasoning
The value of the discriminant ([tex]\( \Delta \)[/tex]) helps in determining the nature of the roots of the quadratic equation. There are three cases to consider:
1. If [tex]\( \Delta > 0 \)[/tex]: The quadratic equation has two distinct real roots.
2. If [tex]\( \Delta = 0 \)[/tex]: The quadratic equation has exactly one real root (a repeated or double root).
3. If [tex]\( \Delta < 0 \)[/tex]: The quadratic equation has no real roots; instead, it has two complex (conjugate) roots.
In this case, we found [tex]\( \Delta = -31 \)[/tex], which is less than zero ([tex]\( \Delta < 0 \)[/tex]). Therefore, the quadratic equation does not have any real roots. Instead, it has two complex (conjugate) roots.
Thus, the roots of the equation [tex]\( 2x^2 - 5x + 7 = 0 \)[/tex] are complex. The description of the roots is:
"The equation has no real roots (complex roots)."
### 1. Find the Discriminant
The given quadratic equation is:
[tex]\[ 2x^2 - 5x + 7 = 0 \][/tex]
The general form of a quadratic equation is:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
where [tex]\( a = 2 \)[/tex], [tex]\( b = -5 \)[/tex], and [tex]\( c = 7 \)[/tex].
The discriminant ([tex]\( \Delta \)[/tex]) of a quadratic equation is given by the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substitute the given values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the discriminant formula:
[tex]\[ \Delta = (-5)^2 - 4 \cdot 2 \cdot 7 \][/tex]
Calculate each term:
[tex]\[ \Delta = 25 - 4 \cdot 2 \cdot 7 \][/tex]
[tex]\[ \Delta = 25 - 56 \][/tex]
[tex]\[ \Delta = -31 \][/tex]
So, the discriminant is [tex]\( \Delta = -31 \)[/tex].
### 2. Describe the Roots and Explain Your Reasoning
The value of the discriminant ([tex]\( \Delta \)[/tex]) helps in determining the nature of the roots of the quadratic equation. There are three cases to consider:
1. If [tex]\( \Delta > 0 \)[/tex]: The quadratic equation has two distinct real roots.
2. If [tex]\( \Delta = 0 \)[/tex]: The quadratic equation has exactly one real root (a repeated or double root).
3. If [tex]\( \Delta < 0 \)[/tex]: The quadratic equation has no real roots; instead, it has two complex (conjugate) roots.
In this case, we found [tex]\( \Delta = -31 \)[/tex], which is less than zero ([tex]\( \Delta < 0 \)[/tex]). Therefore, the quadratic equation does not have any real roots. Instead, it has two complex (conjugate) roots.
Thus, the roots of the equation [tex]\( 2x^2 - 5x + 7 = 0 \)[/tex] are complex. The description of the roots is:
"The equation has no real roots (complex roots)."
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.