Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let’s solve this problem step-by-step.
Step 1: Define the variables
- Let [tex]\( n \)[/tex] be the total number of counters in the bag.
- There are 4 red counters.
- The number of blue counters is [tex]\( n - 4 \)[/tex].
Step 2: Calculate the probability of drawing two blue counters consecutively without replacement.
- The probability of drawing one blue counter first is given by:
[tex]\[ \frac{\text{number of blue counters}}{\text{total number of counters}} = \frac{n - 4}{n} \][/tex]
- Once the first blue counter is drawn, there are now [tex]\( n - 1 \)[/tex] counters left and [tex]\( n - 5 \)[/tex] blue counters remaining.
Thus, the probability of drawing another blue counter is:
[tex]\[ \frac{\text{remaining blue counters}}{\text{remaining total counters}} = \frac{n - 5}{n - 1} \][/tex]
Step 3: Combine these probabilities to find the probability of drawing two blue counters:
[tex]\[ \text{Probability of two blue counters} = \left( \frac{n - 4}{n} \right) \times \left( \frac{n - 5}{n - 1} \right) \][/tex]
Step 4: Set this probability equal to the given probability of [tex]\( \frac{1}{3} \)[/tex]:
[tex]\[ \left( \frac{n - 4}{n} \right) \times \left( \frac{n - 5}{n - 1} \right) = \frac{1}{3} \][/tex]
Step 5: Solve the equation:
- Multiply both sides by [tex]\( 3 \)[/tex] to clear the fraction:
[tex]\[ 3 \left( \frac{(n - 4)(n - 5)}{n(n - 1)} \right) = 1 \][/tex]
- Simplify the left-hand side:
[tex]\[ \frac{3(n - 4)(n - 5)}{n(n - 1)} = 1 \][/tex]
- Multiply both sides by [tex]\( n(n - 1) \)[/tex] to clear the denominator:
[tex]\[ 3(n - 4)(n - 5) = n(n - 1) \][/tex]
- Expand and simplify each side:
[tex]\[ 3(n^2 - 9n + 20) = n^2 - n \][/tex]
[tex]\[ 3n^2 - 27n + 60 = n^2 - n \][/tex]
Step 6: Move all terms to one side to set the equation to zero:
[tex]\[ 3n^2 - 27n + 60 - n^2 + n = 0 \][/tex]
[tex]\[ 2n^2 - 26n + 60 = 0 \][/tex]
Step 7: Divide by the greatest common divisor:
[tex]\[ n^2 - 13n + 30 = 0 \][/tex]
This completes the derivation.
Thus, the derived equation is:
[tex]\[ n^2 - 13n + 30 = 0 \][/tex]
This equation correctly shows the relationship required in the problem statement.
Step 1: Define the variables
- Let [tex]\( n \)[/tex] be the total number of counters in the bag.
- There are 4 red counters.
- The number of blue counters is [tex]\( n - 4 \)[/tex].
Step 2: Calculate the probability of drawing two blue counters consecutively without replacement.
- The probability of drawing one blue counter first is given by:
[tex]\[ \frac{\text{number of blue counters}}{\text{total number of counters}} = \frac{n - 4}{n} \][/tex]
- Once the first blue counter is drawn, there are now [tex]\( n - 1 \)[/tex] counters left and [tex]\( n - 5 \)[/tex] blue counters remaining.
Thus, the probability of drawing another blue counter is:
[tex]\[ \frac{\text{remaining blue counters}}{\text{remaining total counters}} = \frac{n - 5}{n - 1} \][/tex]
Step 3: Combine these probabilities to find the probability of drawing two blue counters:
[tex]\[ \text{Probability of two blue counters} = \left( \frac{n - 4}{n} \right) \times \left( \frac{n - 5}{n - 1} \right) \][/tex]
Step 4: Set this probability equal to the given probability of [tex]\( \frac{1}{3} \)[/tex]:
[tex]\[ \left( \frac{n - 4}{n} \right) \times \left( \frac{n - 5}{n - 1} \right) = \frac{1}{3} \][/tex]
Step 5: Solve the equation:
- Multiply both sides by [tex]\( 3 \)[/tex] to clear the fraction:
[tex]\[ 3 \left( \frac{(n - 4)(n - 5)}{n(n - 1)} \right) = 1 \][/tex]
- Simplify the left-hand side:
[tex]\[ \frac{3(n - 4)(n - 5)}{n(n - 1)} = 1 \][/tex]
- Multiply both sides by [tex]\( n(n - 1) \)[/tex] to clear the denominator:
[tex]\[ 3(n - 4)(n - 5) = n(n - 1) \][/tex]
- Expand and simplify each side:
[tex]\[ 3(n^2 - 9n + 20) = n^2 - n \][/tex]
[tex]\[ 3n^2 - 27n + 60 = n^2 - n \][/tex]
Step 6: Move all terms to one side to set the equation to zero:
[tex]\[ 3n^2 - 27n + 60 - n^2 + n = 0 \][/tex]
[tex]\[ 2n^2 - 26n + 60 = 0 \][/tex]
Step 7: Divide by the greatest common divisor:
[tex]\[ n^2 - 13n + 30 = 0 \][/tex]
This completes the derivation.
Thus, the derived equation is:
[tex]\[ n^2 - 13n + 30 = 0 \][/tex]
This equation correctly shows the relationship required in the problem statement.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.