Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let’s solve this problem step-by-step.
Step 1: Define the variables
- Let [tex]\( n \)[/tex] be the total number of counters in the bag.
- There are 4 red counters.
- The number of blue counters is [tex]\( n - 4 \)[/tex].
Step 2: Calculate the probability of drawing two blue counters consecutively without replacement.
- The probability of drawing one blue counter first is given by:
[tex]\[ \frac{\text{number of blue counters}}{\text{total number of counters}} = \frac{n - 4}{n} \][/tex]
- Once the first blue counter is drawn, there are now [tex]\( n - 1 \)[/tex] counters left and [tex]\( n - 5 \)[/tex] blue counters remaining.
Thus, the probability of drawing another blue counter is:
[tex]\[ \frac{\text{remaining blue counters}}{\text{remaining total counters}} = \frac{n - 5}{n - 1} \][/tex]
Step 3: Combine these probabilities to find the probability of drawing two blue counters:
[tex]\[ \text{Probability of two blue counters} = \left( \frac{n - 4}{n} \right) \times \left( \frac{n - 5}{n - 1} \right) \][/tex]
Step 4: Set this probability equal to the given probability of [tex]\( \frac{1}{3} \)[/tex]:
[tex]\[ \left( \frac{n - 4}{n} \right) \times \left( \frac{n - 5}{n - 1} \right) = \frac{1}{3} \][/tex]
Step 5: Solve the equation:
- Multiply both sides by [tex]\( 3 \)[/tex] to clear the fraction:
[tex]\[ 3 \left( \frac{(n - 4)(n - 5)}{n(n - 1)} \right) = 1 \][/tex]
- Simplify the left-hand side:
[tex]\[ \frac{3(n - 4)(n - 5)}{n(n - 1)} = 1 \][/tex]
- Multiply both sides by [tex]\( n(n - 1) \)[/tex] to clear the denominator:
[tex]\[ 3(n - 4)(n - 5) = n(n - 1) \][/tex]
- Expand and simplify each side:
[tex]\[ 3(n^2 - 9n + 20) = n^2 - n \][/tex]
[tex]\[ 3n^2 - 27n + 60 = n^2 - n \][/tex]
Step 6: Move all terms to one side to set the equation to zero:
[tex]\[ 3n^2 - 27n + 60 - n^2 + n = 0 \][/tex]
[tex]\[ 2n^2 - 26n + 60 = 0 \][/tex]
Step 7: Divide by the greatest common divisor:
[tex]\[ n^2 - 13n + 30 = 0 \][/tex]
This completes the derivation.
Thus, the derived equation is:
[tex]\[ n^2 - 13n + 30 = 0 \][/tex]
This equation correctly shows the relationship required in the problem statement.
Step 1: Define the variables
- Let [tex]\( n \)[/tex] be the total number of counters in the bag.
- There are 4 red counters.
- The number of blue counters is [tex]\( n - 4 \)[/tex].
Step 2: Calculate the probability of drawing two blue counters consecutively without replacement.
- The probability of drawing one blue counter first is given by:
[tex]\[ \frac{\text{number of blue counters}}{\text{total number of counters}} = \frac{n - 4}{n} \][/tex]
- Once the first blue counter is drawn, there are now [tex]\( n - 1 \)[/tex] counters left and [tex]\( n - 5 \)[/tex] blue counters remaining.
Thus, the probability of drawing another blue counter is:
[tex]\[ \frac{\text{remaining blue counters}}{\text{remaining total counters}} = \frac{n - 5}{n - 1} \][/tex]
Step 3: Combine these probabilities to find the probability of drawing two blue counters:
[tex]\[ \text{Probability of two blue counters} = \left( \frac{n - 4}{n} \right) \times \left( \frac{n - 5}{n - 1} \right) \][/tex]
Step 4: Set this probability equal to the given probability of [tex]\( \frac{1}{3} \)[/tex]:
[tex]\[ \left( \frac{n - 4}{n} \right) \times \left( \frac{n - 5}{n - 1} \right) = \frac{1}{3} \][/tex]
Step 5: Solve the equation:
- Multiply both sides by [tex]\( 3 \)[/tex] to clear the fraction:
[tex]\[ 3 \left( \frac{(n - 4)(n - 5)}{n(n - 1)} \right) = 1 \][/tex]
- Simplify the left-hand side:
[tex]\[ \frac{3(n - 4)(n - 5)}{n(n - 1)} = 1 \][/tex]
- Multiply both sides by [tex]\( n(n - 1) \)[/tex] to clear the denominator:
[tex]\[ 3(n - 4)(n - 5) = n(n - 1) \][/tex]
- Expand and simplify each side:
[tex]\[ 3(n^2 - 9n + 20) = n^2 - n \][/tex]
[tex]\[ 3n^2 - 27n + 60 = n^2 - n \][/tex]
Step 6: Move all terms to one side to set the equation to zero:
[tex]\[ 3n^2 - 27n + 60 - n^2 + n = 0 \][/tex]
[tex]\[ 2n^2 - 26n + 60 = 0 \][/tex]
Step 7: Divide by the greatest common divisor:
[tex]\[ n^2 - 13n + 30 = 0 \][/tex]
This completes the derivation.
Thus, the derived equation is:
[tex]\[ n^2 - 13n + 30 = 0 \][/tex]
This equation correctly shows the relationship required in the problem statement.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.