Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the de-Broglie wavelength of the electron in the second orbit of a [tex]\( \text{Li}^{2+} \)[/tex] ion, we'll use the specific given conditions and known fundamental constants.
### Step-by-Step Solution:
1. Determine the relevant constants:
- Bohr radius [tex]\( a_0 \)[/tex]: This is given as [tex]\( 52.9 \, \text{pm} \)[/tex]. This is the average distance of the electron from the nucleus in the hydrogen atom's ground state.
- Atomic number [tex]\( Z \)[/tex] of [tex]\( \text{Li}^{2+} \)[/tex]: For lithium, [tex]\( Z = 3 \)[/tex]. For the [tex]\( \text{Li}^{2+} \)[/tex] ion, this is the atomic number since it has lost two electrons.
- Orbit number [tex]\( n \)[/tex]: We are considering the second orbit, meaning [tex]\( n = 2 \)[/tex].
2. Formula for the de-Broglie wavelength [tex]\( \lambda \)[/tex]:
The de-Broglie wavelength is expressed as:
[tex]\[ \lambda = \frac{2 \pi n a_0}{Z} \][/tex]
Here, [tex]\( \lambda \)[/tex] is the de-Broglie wavelength, [tex]\( n \)[/tex] is the orbit number, [tex]\( a_0 \)[/tex] is the Bohr radius, and [tex]\( Z \)[/tex] is the atomic number.
3. Substituting the given values into the formula:
[tex]\[ \lambda = \frac{2 \pi \cdot 2 \cdot 52.9 \, \text{pm}}{3} \][/tex]
4. Calculating the wavelength [tex]\( \lambda \)[/tex]:
Plug in the values:
[tex]\[ \lambda = \frac{2 \cdot \pi \cdot 2 \cdot 52.9}{3} \][/tex]
5. Perform the multiplication and division:
- First, multiply [tex]\( 2 \cdot 52.9 = 105.8 \)[/tex].
- Then, multiply by [tex]\( 2 \pi \)[/tex]:
[tex]\[ 105.8 \cdot 2 \pi \approx 105.8 \cdot 6.2832 \approx 664.51336 \][/tex]
- Finally, divide by [tex]\( 3 \)[/tex]:
[tex]\[ \lambda \approx \frac{664.51336}{3} \approx 221.50445 \][/tex]
### Conclusion:
Hence, the de-Broglie wavelength of the electron in the second orbit of the [tex]\( \text{Li}^{2+} \)[/tex] ion is approximately [tex]\( 221.587 \, \text{pm} \)[/tex].
### Step-by-Step Solution:
1. Determine the relevant constants:
- Bohr radius [tex]\( a_0 \)[/tex]: This is given as [tex]\( 52.9 \, \text{pm} \)[/tex]. This is the average distance of the electron from the nucleus in the hydrogen atom's ground state.
- Atomic number [tex]\( Z \)[/tex] of [tex]\( \text{Li}^{2+} \)[/tex]: For lithium, [tex]\( Z = 3 \)[/tex]. For the [tex]\( \text{Li}^{2+} \)[/tex] ion, this is the atomic number since it has lost two electrons.
- Orbit number [tex]\( n \)[/tex]: We are considering the second orbit, meaning [tex]\( n = 2 \)[/tex].
2. Formula for the de-Broglie wavelength [tex]\( \lambda \)[/tex]:
The de-Broglie wavelength is expressed as:
[tex]\[ \lambda = \frac{2 \pi n a_0}{Z} \][/tex]
Here, [tex]\( \lambda \)[/tex] is the de-Broglie wavelength, [tex]\( n \)[/tex] is the orbit number, [tex]\( a_0 \)[/tex] is the Bohr radius, and [tex]\( Z \)[/tex] is the atomic number.
3. Substituting the given values into the formula:
[tex]\[ \lambda = \frac{2 \pi \cdot 2 \cdot 52.9 \, \text{pm}}{3} \][/tex]
4. Calculating the wavelength [tex]\( \lambda \)[/tex]:
Plug in the values:
[tex]\[ \lambda = \frac{2 \cdot \pi \cdot 2 \cdot 52.9}{3} \][/tex]
5. Perform the multiplication and division:
- First, multiply [tex]\( 2 \cdot 52.9 = 105.8 \)[/tex].
- Then, multiply by [tex]\( 2 \pi \)[/tex]:
[tex]\[ 105.8 \cdot 2 \pi \approx 105.8 \cdot 6.2832 \approx 664.51336 \][/tex]
- Finally, divide by [tex]\( 3 \)[/tex]:
[tex]\[ \lambda \approx \frac{664.51336}{3} \approx 221.50445 \][/tex]
### Conclusion:
Hence, the de-Broglie wavelength of the electron in the second orbit of the [tex]\( \text{Li}^{2+} \)[/tex] ion is approximately [tex]\( 221.587 \, \text{pm} \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.