Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Given the reaction of hydrogen iodide:
[tex]\[ H_2(g) + I_2(g) \Leftrightarrow 2 HI(g) \][/tex]
What is the equilibrium constant [tex]\( K_p \)[/tex] expression?

A. [tex]\( K_p = \frac{1}{(P_{H_2})(P_{I_2})} \)[/tex]

B. [tex]\( K_p = \frac{(P_{HI})^2}{(P_{H_2})(P_{I_2})} \)[/tex]

C. [tex]\( K_p = \frac{(P_{H_2})(P_{I_2})}{(P_{HI})^2} \)[/tex]

D. [tex]\( K_p = (P_{H_2})(P_{I_2}) \)[/tex]

For a reaction to shift towards the product direction, which of the following conditions must hold true?

A. [tex]\( Q_c = K_c = 0 \)[/tex]

B. [tex]\( Q_c \ \textless \ K_c \)[/tex]

C. [tex]\( Q_c \ \textgreater \ K_c \)[/tex]

D. [tex]\( Q_c = K_c \)[/tex]


Sagot :

Given the reaction:
[tex]\[ \text{H}_{2}(g) + \text{I}_{2}(g) \leftrightarrow 2 \text{HI}(g) \][/tex]

The equilibrium constant expression [tex]\( K_p \)[/tex] is related to the partial pressures of the gases involved. For the general reaction:
[tex]\[ aA + bB \leftrightarrow cC + dD \][/tex]

The equilibrium constant [tex]\( K_p \)[/tex] is expressed as:
[tex]\[ K_p = \frac{(P_C)^c (P_D)^d}{(P_A)^a (P_B)^b} \][/tex]

For the given reaction, the equilibrium constant expression [tex]\( K_p \)[/tex] will be:
[tex]\[ K_p = \frac{(P_{\text{HI}})^2}{(P_{\text{H}_2})(P_{\text{I}_2})} \][/tex]

Interpreting the given options:
- Option A: [tex]\( K_p = \frac{1}{P_{\text{H}_2} P_{\text{I}_2}} \)[/tex] (Incorrect)
- Option B: [tex]\( K_p = \frac{(P_{\text{HI}})^2}{(P_{\text{H}_2})(P_{\text{I}_2})} \)[/tex] (Correct)
- Option C: [tex]\( K_p = \frac{P_{\text{H}_2} P_{\text{I}_2}}{(P_{\text{HI}})^2} \)[/tex] (Incorrect)
- Option D: [tex]\( K_p = P_{\text{H}_2} P_{\text{I}_2} \)[/tex] (Incorrect)

Thus, the correct expression for [tex]\( K_p \)[/tex] is:
[tex]\[ \boxed{B. \; K_p = \frac{(P_{\text{HI}})^2}{(P_{\text{H}_2})(P_{\text{I}_2})}} \][/tex]

For a reaction to shift towards the product direction, the reaction quotient [tex]\( Q \)[/tex] needs to be compared to the equilibrium constant [tex]\( K \)[/tex]. The reaction quotient [tex]\( Q \)[/tex] is given by:

[tex]\[ Q_c = \frac{[\text{products}]}{[\text{reactants}]} \][/tex]

For the reaction to proceed towards the products' direction:
[tex]\[ Q_c < K_c \][/tex]

Interpreting the given options:
- Option a: [tex]\( Q_c = K_c = 0 \)[/tex] (Not logical, both cannot be zero)
- Option B: [tex]\( Q_c < K_c \)[/tex] (Correct)
- Option C: [tex]\( Q_c > K_c \)[/tex] (Incorrect, would shift towards reactants)
- Option D: [tex]\( Q_c = K_c \)[/tex] (Indicates equilibrium, no shift)

Therefore, for a reaction to shift towards the product direction, the correct condition is:
[tex]\[ \boxed{B. \; Q_c < K_c} \][/tex]