Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Given the reaction:
[tex]\[ \text{H}_{2}(g) + \text{I}_{2}(g) \leftrightarrow 2 \text{HI}(g) \][/tex]
The equilibrium constant expression [tex]\( K_p \)[/tex] is related to the partial pressures of the gases involved. For the general reaction:
[tex]\[ aA + bB \leftrightarrow cC + dD \][/tex]
The equilibrium constant [tex]\( K_p \)[/tex] is expressed as:
[tex]\[ K_p = \frac{(P_C)^c (P_D)^d}{(P_A)^a (P_B)^b} \][/tex]
For the given reaction, the equilibrium constant expression [tex]\( K_p \)[/tex] will be:
[tex]\[ K_p = \frac{(P_{\text{HI}})^2}{(P_{\text{H}_2})(P_{\text{I}_2})} \][/tex]
Interpreting the given options:
- Option A: [tex]\( K_p = \frac{1}{P_{\text{H}_2} P_{\text{I}_2}} \)[/tex] (Incorrect)
- Option B: [tex]\( K_p = \frac{(P_{\text{HI}})^2}{(P_{\text{H}_2})(P_{\text{I}_2})} \)[/tex] (Correct)
- Option C: [tex]\( K_p = \frac{P_{\text{H}_2} P_{\text{I}_2}}{(P_{\text{HI}})^2} \)[/tex] (Incorrect)
- Option D: [tex]\( K_p = P_{\text{H}_2} P_{\text{I}_2} \)[/tex] (Incorrect)
Thus, the correct expression for [tex]\( K_p \)[/tex] is:
[tex]\[ \boxed{B. \; K_p = \frac{(P_{\text{HI}})^2}{(P_{\text{H}_2})(P_{\text{I}_2})}} \][/tex]
For a reaction to shift towards the product direction, the reaction quotient [tex]\( Q \)[/tex] needs to be compared to the equilibrium constant [tex]\( K \)[/tex]. The reaction quotient [tex]\( Q \)[/tex] is given by:
[tex]\[ Q_c = \frac{[\text{products}]}{[\text{reactants}]} \][/tex]
For the reaction to proceed towards the products' direction:
[tex]\[ Q_c < K_c \][/tex]
Interpreting the given options:
- Option a: [tex]\( Q_c = K_c = 0 \)[/tex] (Not logical, both cannot be zero)
- Option B: [tex]\( Q_c < K_c \)[/tex] (Correct)
- Option C: [tex]\( Q_c > K_c \)[/tex] (Incorrect, would shift towards reactants)
- Option D: [tex]\( Q_c = K_c \)[/tex] (Indicates equilibrium, no shift)
Therefore, for a reaction to shift towards the product direction, the correct condition is:
[tex]\[ \boxed{B. \; Q_c < K_c} \][/tex]
[tex]\[ \text{H}_{2}(g) + \text{I}_{2}(g) \leftrightarrow 2 \text{HI}(g) \][/tex]
The equilibrium constant expression [tex]\( K_p \)[/tex] is related to the partial pressures of the gases involved. For the general reaction:
[tex]\[ aA + bB \leftrightarrow cC + dD \][/tex]
The equilibrium constant [tex]\( K_p \)[/tex] is expressed as:
[tex]\[ K_p = \frac{(P_C)^c (P_D)^d}{(P_A)^a (P_B)^b} \][/tex]
For the given reaction, the equilibrium constant expression [tex]\( K_p \)[/tex] will be:
[tex]\[ K_p = \frac{(P_{\text{HI}})^2}{(P_{\text{H}_2})(P_{\text{I}_2})} \][/tex]
Interpreting the given options:
- Option A: [tex]\( K_p = \frac{1}{P_{\text{H}_2} P_{\text{I}_2}} \)[/tex] (Incorrect)
- Option B: [tex]\( K_p = \frac{(P_{\text{HI}})^2}{(P_{\text{H}_2})(P_{\text{I}_2})} \)[/tex] (Correct)
- Option C: [tex]\( K_p = \frac{P_{\text{H}_2} P_{\text{I}_2}}{(P_{\text{HI}})^2} \)[/tex] (Incorrect)
- Option D: [tex]\( K_p = P_{\text{H}_2} P_{\text{I}_2} \)[/tex] (Incorrect)
Thus, the correct expression for [tex]\( K_p \)[/tex] is:
[tex]\[ \boxed{B. \; K_p = \frac{(P_{\text{HI}})^2}{(P_{\text{H}_2})(P_{\text{I}_2})}} \][/tex]
For a reaction to shift towards the product direction, the reaction quotient [tex]\( Q \)[/tex] needs to be compared to the equilibrium constant [tex]\( K \)[/tex]. The reaction quotient [tex]\( Q \)[/tex] is given by:
[tex]\[ Q_c = \frac{[\text{products}]}{[\text{reactants}]} \][/tex]
For the reaction to proceed towards the products' direction:
[tex]\[ Q_c < K_c \][/tex]
Interpreting the given options:
- Option a: [tex]\( Q_c = K_c = 0 \)[/tex] (Not logical, both cannot be zero)
- Option B: [tex]\( Q_c < K_c \)[/tex] (Correct)
- Option C: [tex]\( Q_c > K_c \)[/tex] (Incorrect, would shift towards reactants)
- Option D: [tex]\( Q_c = K_c \)[/tex] (Indicates equilibrium, no shift)
Therefore, for a reaction to shift towards the product direction, the correct condition is:
[tex]\[ \boxed{B. \; Q_c < K_c} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.