Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Given the reaction:
[tex]\[ \text{H}_{2}(g) + \text{I}_{2}(g) \leftrightarrow 2 \text{HI}(g) \][/tex]
The equilibrium constant expression [tex]\( K_p \)[/tex] is related to the partial pressures of the gases involved. For the general reaction:
[tex]\[ aA + bB \leftrightarrow cC + dD \][/tex]
The equilibrium constant [tex]\( K_p \)[/tex] is expressed as:
[tex]\[ K_p = \frac{(P_C)^c (P_D)^d}{(P_A)^a (P_B)^b} \][/tex]
For the given reaction, the equilibrium constant expression [tex]\( K_p \)[/tex] will be:
[tex]\[ K_p = \frac{(P_{\text{HI}})^2}{(P_{\text{H}_2})(P_{\text{I}_2})} \][/tex]
Interpreting the given options:
- Option A: [tex]\( K_p = \frac{1}{P_{\text{H}_2} P_{\text{I}_2}} \)[/tex] (Incorrect)
- Option B: [tex]\( K_p = \frac{(P_{\text{HI}})^2}{(P_{\text{H}_2})(P_{\text{I}_2})} \)[/tex] (Correct)
- Option C: [tex]\( K_p = \frac{P_{\text{H}_2} P_{\text{I}_2}}{(P_{\text{HI}})^2} \)[/tex] (Incorrect)
- Option D: [tex]\( K_p = P_{\text{H}_2} P_{\text{I}_2} \)[/tex] (Incorrect)
Thus, the correct expression for [tex]\( K_p \)[/tex] is:
[tex]\[ \boxed{B. \; K_p = \frac{(P_{\text{HI}})^2}{(P_{\text{H}_2})(P_{\text{I}_2})}} \][/tex]
For a reaction to shift towards the product direction, the reaction quotient [tex]\( Q \)[/tex] needs to be compared to the equilibrium constant [tex]\( K \)[/tex]. The reaction quotient [tex]\( Q \)[/tex] is given by:
[tex]\[ Q_c = \frac{[\text{products}]}{[\text{reactants}]} \][/tex]
For the reaction to proceed towards the products' direction:
[tex]\[ Q_c < K_c \][/tex]
Interpreting the given options:
- Option a: [tex]\( Q_c = K_c = 0 \)[/tex] (Not logical, both cannot be zero)
- Option B: [tex]\( Q_c < K_c \)[/tex] (Correct)
- Option C: [tex]\( Q_c > K_c \)[/tex] (Incorrect, would shift towards reactants)
- Option D: [tex]\( Q_c = K_c \)[/tex] (Indicates equilibrium, no shift)
Therefore, for a reaction to shift towards the product direction, the correct condition is:
[tex]\[ \boxed{B. \; Q_c < K_c} \][/tex]
[tex]\[ \text{H}_{2}(g) + \text{I}_{2}(g) \leftrightarrow 2 \text{HI}(g) \][/tex]
The equilibrium constant expression [tex]\( K_p \)[/tex] is related to the partial pressures of the gases involved. For the general reaction:
[tex]\[ aA + bB \leftrightarrow cC + dD \][/tex]
The equilibrium constant [tex]\( K_p \)[/tex] is expressed as:
[tex]\[ K_p = \frac{(P_C)^c (P_D)^d}{(P_A)^a (P_B)^b} \][/tex]
For the given reaction, the equilibrium constant expression [tex]\( K_p \)[/tex] will be:
[tex]\[ K_p = \frac{(P_{\text{HI}})^2}{(P_{\text{H}_2})(P_{\text{I}_2})} \][/tex]
Interpreting the given options:
- Option A: [tex]\( K_p = \frac{1}{P_{\text{H}_2} P_{\text{I}_2}} \)[/tex] (Incorrect)
- Option B: [tex]\( K_p = \frac{(P_{\text{HI}})^2}{(P_{\text{H}_2})(P_{\text{I}_2})} \)[/tex] (Correct)
- Option C: [tex]\( K_p = \frac{P_{\text{H}_2} P_{\text{I}_2}}{(P_{\text{HI}})^2} \)[/tex] (Incorrect)
- Option D: [tex]\( K_p = P_{\text{H}_2} P_{\text{I}_2} \)[/tex] (Incorrect)
Thus, the correct expression for [tex]\( K_p \)[/tex] is:
[tex]\[ \boxed{B. \; K_p = \frac{(P_{\text{HI}})^2}{(P_{\text{H}_2})(P_{\text{I}_2})}} \][/tex]
For a reaction to shift towards the product direction, the reaction quotient [tex]\( Q \)[/tex] needs to be compared to the equilibrium constant [tex]\( K \)[/tex]. The reaction quotient [tex]\( Q \)[/tex] is given by:
[tex]\[ Q_c = \frac{[\text{products}]}{[\text{reactants}]} \][/tex]
For the reaction to proceed towards the products' direction:
[tex]\[ Q_c < K_c \][/tex]
Interpreting the given options:
- Option a: [tex]\( Q_c = K_c = 0 \)[/tex] (Not logical, both cannot be zero)
- Option B: [tex]\( Q_c < K_c \)[/tex] (Correct)
- Option C: [tex]\( Q_c > K_c \)[/tex] (Incorrect, would shift towards reactants)
- Option D: [tex]\( Q_c = K_c \)[/tex] (Indicates equilibrium, no shift)
Therefore, for a reaction to shift towards the product direction, the correct condition is:
[tex]\[ \boxed{B. \; Q_c < K_c} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.