Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Given the reaction:
[tex]\[ \text{H}_{2}(g) + \text{I}_{2}(g) \leftrightarrow 2 \text{HI}(g) \][/tex]
The equilibrium constant expression [tex]\( K_p \)[/tex] is related to the partial pressures of the gases involved. For the general reaction:
[tex]\[ aA + bB \leftrightarrow cC + dD \][/tex]
The equilibrium constant [tex]\( K_p \)[/tex] is expressed as:
[tex]\[ K_p = \frac{(P_C)^c (P_D)^d}{(P_A)^a (P_B)^b} \][/tex]
For the given reaction, the equilibrium constant expression [tex]\( K_p \)[/tex] will be:
[tex]\[ K_p = \frac{(P_{\text{HI}})^2}{(P_{\text{H}_2})(P_{\text{I}_2})} \][/tex]
Interpreting the given options:
- Option A: [tex]\( K_p = \frac{1}{P_{\text{H}_2} P_{\text{I}_2}} \)[/tex] (Incorrect)
- Option B: [tex]\( K_p = \frac{(P_{\text{HI}})^2}{(P_{\text{H}_2})(P_{\text{I}_2})} \)[/tex] (Correct)
- Option C: [tex]\( K_p = \frac{P_{\text{H}_2} P_{\text{I}_2}}{(P_{\text{HI}})^2} \)[/tex] (Incorrect)
- Option D: [tex]\( K_p = P_{\text{H}_2} P_{\text{I}_2} \)[/tex] (Incorrect)
Thus, the correct expression for [tex]\( K_p \)[/tex] is:
[tex]\[ \boxed{B. \; K_p = \frac{(P_{\text{HI}})^2}{(P_{\text{H}_2})(P_{\text{I}_2})}} \][/tex]
For a reaction to shift towards the product direction, the reaction quotient [tex]\( Q \)[/tex] needs to be compared to the equilibrium constant [tex]\( K \)[/tex]. The reaction quotient [tex]\( Q \)[/tex] is given by:
[tex]\[ Q_c = \frac{[\text{products}]}{[\text{reactants}]} \][/tex]
For the reaction to proceed towards the products' direction:
[tex]\[ Q_c < K_c \][/tex]
Interpreting the given options:
- Option a: [tex]\( Q_c = K_c = 0 \)[/tex] (Not logical, both cannot be zero)
- Option B: [tex]\( Q_c < K_c \)[/tex] (Correct)
- Option C: [tex]\( Q_c > K_c \)[/tex] (Incorrect, would shift towards reactants)
- Option D: [tex]\( Q_c = K_c \)[/tex] (Indicates equilibrium, no shift)
Therefore, for a reaction to shift towards the product direction, the correct condition is:
[tex]\[ \boxed{B. \; Q_c < K_c} \][/tex]
[tex]\[ \text{H}_{2}(g) + \text{I}_{2}(g) \leftrightarrow 2 \text{HI}(g) \][/tex]
The equilibrium constant expression [tex]\( K_p \)[/tex] is related to the partial pressures of the gases involved. For the general reaction:
[tex]\[ aA + bB \leftrightarrow cC + dD \][/tex]
The equilibrium constant [tex]\( K_p \)[/tex] is expressed as:
[tex]\[ K_p = \frac{(P_C)^c (P_D)^d}{(P_A)^a (P_B)^b} \][/tex]
For the given reaction, the equilibrium constant expression [tex]\( K_p \)[/tex] will be:
[tex]\[ K_p = \frac{(P_{\text{HI}})^2}{(P_{\text{H}_2})(P_{\text{I}_2})} \][/tex]
Interpreting the given options:
- Option A: [tex]\( K_p = \frac{1}{P_{\text{H}_2} P_{\text{I}_2}} \)[/tex] (Incorrect)
- Option B: [tex]\( K_p = \frac{(P_{\text{HI}})^2}{(P_{\text{H}_2})(P_{\text{I}_2})} \)[/tex] (Correct)
- Option C: [tex]\( K_p = \frac{P_{\text{H}_2} P_{\text{I}_2}}{(P_{\text{HI}})^2} \)[/tex] (Incorrect)
- Option D: [tex]\( K_p = P_{\text{H}_2} P_{\text{I}_2} \)[/tex] (Incorrect)
Thus, the correct expression for [tex]\( K_p \)[/tex] is:
[tex]\[ \boxed{B. \; K_p = \frac{(P_{\text{HI}})^2}{(P_{\text{H}_2})(P_{\text{I}_2})}} \][/tex]
For a reaction to shift towards the product direction, the reaction quotient [tex]\( Q \)[/tex] needs to be compared to the equilibrium constant [tex]\( K \)[/tex]. The reaction quotient [tex]\( Q \)[/tex] is given by:
[tex]\[ Q_c = \frac{[\text{products}]}{[\text{reactants}]} \][/tex]
For the reaction to proceed towards the products' direction:
[tex]\[ Q_c < K_c \][/tex]
Interpreting the given options:
- Option a: [tex]\( Q_c = K_c = 0 \)[/tex] (Not logical, both cannot be zero)
- Option B: [tex]\( Q_c < K_c \)[/tex] (Correct)
- Option C: [tex]\( Q_c > K_c \)[/tex] (Incorrect, would shift towards reactants)
- Option D: [tex]\( Q_c = K_c \)[/tex] (Indicates equilibrium, no shift)
Therefore, for a reaction to shift towards the product direction, the correct condition is:
[tex]\[ \boxed{B. \; Q_c < K_c} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.