Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the area of a circle given its circumference, we need to follow these steps:
1. Understand the relationship between circumference and radius:
The circumference [tex]\(C\)[/tex] of a circle is given by the formula:
[tex]\[ C = 2\pi r \][/tex]
where [tex]\(r\)[/tex] is the radius and [tex]\(\pi\)[/tex] is a mathematical constant approximately equal to 3.14159.
2. Solve for the radius:
Given the circumference [tex]\(C = 31.4\)[/tex] units, we can solve for the radius [tex]\(r\)[/tex] using the formula:
[tex]\[ r = \frac{C}{2\pi} \][/tex]
So,
[tex]\[ r = \frac{31.4}{2\pi} \][/tex]
After performing the calculation, we find:
[tex]\[ r \approx 4.997465213085514 \, \text{units} \][/tex]
3. Determine the area of the circle:
The area [tex]\(A\)[/tex] of a circle is given by the formula:
[tex]\[ A = \pi r^2 \][/tex]
Substituting the value of the radius we found:
[tex]\[ A = \pi (4.997465213085514)^2 \][/tex]
After performing the calculation, we get:
[tex]\[ A \approx 78.46020384544256 \, \text{units}^2 \][/tex]
Hence, the area of the circle with a circumference of 31.4 units is approximately [tex]\( 78.46020384544256 \)[/tex] square units.
1. Understand the relationship between circumference and radius:
The circumference [tex]\(C\)[/tex] of a circle is given by the formula:
[tex]\[ C = 2\pi r \][/tex]
where [tex]\(r\)[/tex] is the radius and [tex]\(\pi\)[/tex] is a mathematical constant approximately equal to 3.14159.
2. Solve for the radius:
Given the circumference [tex]\(C = 31.4\)[/tex] units, we can solve for the radius [tex]\(r\)[/tex] using the formula:
[tex]\[ r = \frac{C}{2\pi} \][/tex]
So,
[tex]\[ r = \frac{31.4}{2\pi} \][/tex]
After performing the calculation, we find:
[tex]\[ r \approx 4.997465213085514 \, \text{units} \][/tex]
3. Determine the area of the circle:
The area [tex]\(A\)[/tex] of a circle is given by the formula:
[tex]\[ A = \pi r^2 \][/tex]
Substituting the value of the radius we found:
[tex]\[ A = \pi (4.997465213085514)^2 \][/tex]
After performing the calculation, we get:
[tex]\[ A \approx 78.46020384544256 \, \text{units}^2 \][/tex]
Hence, the area of the circle with a circumference of 31.4 units is approximately [tex]\( 78.46020384544256 \)[/tex] square units.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.