Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Answer:
[tex]y=\dfrac{1}{2}x-4[/tex]
Step-by-step explanation:
Perpendicular Lines
Lines that form a 90-degree angle between each other have slopes that are negative reciprocals to each other.
For example,
Line A has a slope of [tex]\dfrac{1}{4}[/tex], so line B's slope is -4.
A more algebraic way of finding the negative reciprocal is,
[tex]-\dfrac{1}{m}[/tex],
where m is line A's slope --or any line's slope.
Finding the Equation of a Line
When given a point on the line, it can be plugged into the linear equation and rearranged to find its m or b value, depending on whether either of the values is known already.
[tex]\hrulefill[/tex]
Solving the Problem
If our equation is perpendicular to a line with a slope of -2, then our equation's m value must be [tex]-\dfrac{1}{-2 } =\dfrac{1}{2}[/tex].
So, our equation is currently,
[tex]y=\dfrac{1}{2}x+b[/tex].
To find the b value we can plug in the given coordinate point,
[tex]-7=\dfrac{1}{2}(-6)+b[/tex]
[tex]-7=-3+b[/tex]
[tex]-4=b[/tex].
So our final answer is,
[tex]y=\dfrac{1}{2}x-4[/tex].
y = (1/2)x - 4 is the equation of the perpendicular line.
The equation of the perpendicular line:
- Slope of the given line: The given line is in slope-intercept form (y = -2x + 4). The slope of this line is -2.
- Slope of the perpendicular line: The slope of a line perpendicular to another line is the negative reciprocal of the original slope. Therefore, the slope of the perpendicular line is 1/2.
- Point-slope form: We know a point the perpendicular line must pass through (-6, -7) and its slope is 1/2. We can use the point-slope form of linear equations: y - y₁ = m(x - x₁)
where:
y is the y-coordinate of any point on the line
y₁ is the y-coordinate of the known point (-7)
m is the slope (1/2)
x is the x-coordinate of any point on the line
x₁ is the x-coordinate of the known point (-6)
Substitute and solve for y:
y - (-7) = (1/2) (x - (-6))
y + 7 = (1/2)x + 3
Slope-intercept form:
Isolate y to get the equation in slope-intercept form (y = mx + b):
y = (1/2)x + 3 - 7
y = (1/2)x - 4.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.