At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Yes, the function y = 2x³ - 3x + 3 is a solution to the IVP: y' = 6x² - 3 and y(1) = 2.
Work
To determine if the function is a solution to the initial value problem, we need to check if the derivate of the function matches up with that of the IVP.
Taking the derivative of: y = 2x³ - 3x + 3 with respect to x
y' = 6x² - 3
The derivatives are indeed the same. Now, we need check the initial condition by substituting the values of y(1) = 2 into the original function.
y = 2x³ - 3x + 3
2 = 2(1)³ - 3(1) + 3
2 = 2 - 3 + 3
2 = 2
Therefore, the function y = 2x³ - 3x + 3 is indeed a solution to the IVP y' = 6x² - 3 as both conditions are satisfied.
The function y = 2x³ - 3x + 3 is a solution to the initial-value problem y' = 6x² - 3 and y(1) = 2, since it satisfies both the differential equation and the initial condition.
To determine if the function y = 2x³ - 3x + 3 is a solution to the initial-value problem (IVP) given by y' = 6x² - 3 and y(1) = 2, follow these steps:
Step 1: Compute the Derivative
To check if the function satisfies the differential equation y' = 6x² - 3, first find the derivative of the function y:
- Given: y = 2x³ - 3x + 3
- The derivative of y is computed as follows:
- y' = d/dx (2x³ - 3x + 3)
- Applying the power rule: y' = 6x² - 3
The result matches the differential equation y' = 6x² - 3.
Step 2: Verify the Initial Condition
Next, check if the function satisfies the initial condition y(1) = 2:
- Substitute x = 1 into y = 2x³ - 3x + 3:
- y(1) = 2(1)³ - 3(1) + 3 = 2 - 3 + 3 = 2
The result matches the initial condition y(1) = 2.
Since the function y = 2x³ - 3x + 3 satisfies both the differential equation y' = 6x² - 3 and the initial condition y(1) = 2, it is a solution to the initial-value problem.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.