Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's solve the problem step-by-step using equations of motion.
### Given:
1. Acceleration, [tex]\( a = 0.8 \, \text{m/s}^2 \)[/tex]
2. Distance, [tex]\( s = 1 \, \text{km} = 1000 \, \text{m} \)[/tex]
3. Initial velocity, [tex]\( u = 0 \, \text{m/s} \)[/tex] (since the bus starts from rest)
### To find:
1. The final velocity [tex]\( v \)[/tex] of the bus.
2. The time [tex]\( t \)[/tex] it takes to cover the distance of [tex]\( 1.0 \, \text{km} \)[/tex].
### Step 1: Finding the final velocity [tex]\( v \)[/tex]
We can use the kinematic equation:
[tex]\[ v^2 = u^2 + 2as \][/tex]
Since [tex]\( u = 0 \)[/tex]:
[tex]\[ v^2 = 0 + 2 \cdot 0.8 \cdot 1000 \][/tex]
[tex]\[ v^2 = 1600 \][/tex]
[tex]\[ v = \sqrt{1600} \][/tex]
[tex]\[ v = 40 \, \text{m/s} \][/tex]
Therefore, the final velocity [tex]\( v \)[/tex] of the bus is [tex]\( 40 \, \text{m/s} \)[/tex].
### Step 2: Finding the time [tex]\( t \)[/tex]
We can use another kinematic equation:
[tex]\[ s = ut + \frac{1}{2}at^2 \][/tex]
Since [tex]\( u = 0 \)[/tex]:
[tex]\[ s = \frac{1}{2}at^2 \][/tex]
Rearranging for [tex]\( t \)[/tex]:
[tex]\[ 1000 = \frac{1}{2} \cdot 0.8 \cdot t^2 \][/tex]
[tex]\[ 1000 = 0.4 \cdot t^2 \][/tex]
[tex]\[ t^2 = \frac{1000}{0.4} \][/tex]
[tex]\[ t^2 = 2500 \][/tex]
[tex]\[ t = \sqrt{2500} \][/tex]
[tex]\[ t = 50 \, \text{s} \][/tex]
Therefore, the time [tex]\( t \)[/tex] it takes to cover [tex]\( 1.0 \, \text{km} \)[/tex] is [tex]\( 50 \, \text{s} \)[/tex].
### Summary
- The final velocity of the bus is [tex]\( 40 \, \text{m/s} \)[/tex].
- The time it takes to cover [tex]\( 1.0 \, \text{km} \)[/tex] is [tex]\( 50 \, \text{s} \)[/tex].
### Given:
1. Acceleration, [tex]\( a = 0.8 \, \text{m/s}^2 \)[/tex]
2. Distance, [tex]\( s = 1 \, \text{km} = 1000 \, \text{m} \)[/tex]
3. Initial velocity, [tex]\( u = 0 \, \text{m/s} \)[/tex] (since the bus starts from rest)
### To find:
1. The final velocity [tex]\( v \)[/tex] of the bus.
2. The time [tex]\( t \)[/tex] it takes to cover the distance of [tex]\( 1.0 \, \text{km} \)[/tex].
### Step 1: Finding the final velocity [tex]\( v \)[/tex]
We can use the kinematic equation:
[tex]\[ v^2 = u^2 + 2as \][/tex]
Since [tex]\( u = 0 \)[/tex]:
[tex]\[ v^2 = 0 + 2 \cdot 0.8 \cdot 1000 \][/tex]
[tex]\[ v^2 = 1600 \][/tex]
[tex]\[ v = \sqrt{1600} \][/tex]
[tex]\[ v = 40 \, \text{m/s} \][/tex]
Therefore, the final velocity [tex]\( v \)[/tex] of the bus is [tex]\( 40 \, \text{m/s} \)[/tex].
### Step 2: Finding the time [tex]\( t \)[/tex]
We can use another kinematic equation:
[tex]\[ s = ut + \frac{1}{2}at^2 \][/tex]
Since [tex]\( u = 0 \)[/tex]:
[tex]\[ s = \frac{1}{2}at^2 \][/tex]
Rearranging for [tex]\( t \)[/tex]:
[tex]\[ 1000 = \frac{1}{2} \cdot 0.8 \cdot t^2 \][/tex]
[tex]\[ 1000 = 0.4 \cdot t^2 \][/tex]
[tex]\[ t^2 = \frac{1000}{0.4} \][/tex]
[tex]\[ t^2 = 2500 \][/tex]
[tex]\[ t = \sqrt{2500} \][/tex]
[tex]\[ t = 50 \, \text{s} \][/tex]
Therefore, the time [tex]\( t \)[/tex] it takes to cover [tex]\( 1.0 \, \text{km} \)[/tex] is [tex]\( 50 \, \text{s} \)[/tex].
### Summary
- The final velocity of the bus is [tex]\( 40 \, \text{m/s} \)[/tex].
- The time it takes to cover [tex]\( 1.0 \, \text{km} \)[/tex] is [tex]\( 50 \, \text{s} \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.