Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's solve the problem step-by-step using equations of motion.
### Given:
1. Acceleration, [tex]\( a = 0.8 \, \text{m/s}^2 \)[/tex]
2. Distance, [tex]\( s = 1 \, \text{km} = 1000 \, \text{m} \)[/tex]
3. Initial velocity, [tex]\( u = 0 \, \text{m/s} \)[/tex] (since the bus starts from rest)
### To find:
1. The final velocity [tex]\( v \)[/tex] of the bus.
2. The time [tex]\( t \)[/tex] it takes to cover the distance of [tex]\( 1.0 \, \text{km} \)[/tex].
### Step 1: Finding the final velocity [tex]\( v \)[/tex]
We can use the kinematic equation:
[tex]\[ v^2 = u^2 + 2as \][/tex]
Since [tex]\( u = 0 \)[/tex]:
[tex]\[ v^2 = 0 + 2 \cdot 0.8 \cdot 1000 \][/tex]
[tex]\[ v^2 = 1600 \][/tex]
[tex]\[ v = \sqrt{1600} \][/tex]
[tex]\[ v = 40 \, \text{m/s} \][/tex]
Therefore, the final velocity [tex]\( v \)[/tex] of the bus is [tex]\( 40 \, \text{m/s} \)[/tex].
### Step 2: Finding the time [tex]\( t \)[/tex]
We can use another kinematic equation:
[tex]\[ s = ut + \frac{1}{2}at^2 \][/tex]
Since [tex]\( u = 0 \)[/tex]:
[tex]\[ s = \frac{1}{2}at^2 \][/tex]
Rearranging for [tex]\( t \)[/tex]:
[tex]\[ 1000 = \frac{1}{2} \cdot 0.8 \cdot t^2 \][/tex]
[tex]\[ 1000 = 0.4 \cdot t^2 \][/tex]
[tex]\[ t^2 = \frac{1000}{0.4} \][/tex]
[tex]\[ t^2 = 2500 \][/tex]
[tex]\[ t = \sqrt{2500} \][/tex]
[tex]\[ t = 50 \, \text{s} \][/tex]
Therefore, the time [tex]\( t \)[/tex] it takes to cover [tex]\( 1.0 \, \text{km} \)[/tex] is [tex]\( 50 \, \text{s} \)[/tex].
### Summary
- The final velocity of the bus is [tex]\( 40 \, \text{m/s} \)[/tex].
- The time it takes to cover [tex]\( 1.0 \, \text{km} \)[/tex] is [tex]\( 50 \, \text{s} \)[/tex].
### Given:
1. Acceleration, [tex]\( a = 0.8 \, \text{m/s}^2 \)[/tex]
2. Distance, [tex]\( s = 1 \, \text{km} = 1000 \, \text{m} \)[/tex]
3. Initial velocity, [tex]\( u = 0 \, \text{m/s} \)[/tex] (since the bus starts from rest)
### To find:
1. The final velocity [tex]\( v \)[/tex] of the bus.
2. The time [tex]\( t \)[/tex] it takes to cover the distance of [tex]\( 1.0 \, \text{km} \)[/tex].
### Step 1: Finding the final velocity [tex]\( v \)[/tex]
We can use the kinematic equation:
[tex]\[ v^2 = u^2 + 2as \][/tex]
Since [tex]\( u = 0 \)[/tex]:
[tex]\[ v^2 = 0 + 2 \cdot 0.8 \cdot 1000 \][/tex]
[tex]\[ v^2 = 1600 \][/tex]
[tex]\[ v = \sqrt{1600} \][/tex]
[tex]\[ v = 40 \, \text{m/s} \][/tex]
Therefore, the final velocity [tex]\( v \)[/tex] of the bus is [tex]\( 40 \, \text{m/s} \)[/tex].
### Step 2: Finding the time [tex]\( t \)[/tex]
We can use another kinematic equation:
[tex]\[ s = ut + \frac{1}{2}at^2 \][/tex]
Since [tex]\( u = 0 \)[/tex]:
[tex]\[ s = \frac{1}{2}at^2 \][/tex]
Rearranging for [tex]\( t \)[/tex]:
[tex]\[ 1000 = \frac{1}{2} \cdot 0.8 \cdot t^2 \][/tex]
[tex]\[ 1000 = 0.4 \cdot t^2 \][/tex]
[tex]\[ t^2 = \frac{1000}{0.4} \][/tex]
[tex]\[ t^2 = 2500 \][/tex]
[tex]\[ t = \sqrt{2500} \][/tex]
[tex]\[ t = 50 \, \text{s} \][/tex]
Therefore, the time [tex]\( t \)[/tex] it takes to cover [tex]\( 1.0 \, \text{km} \)[/tex] is [tex]\( 50 \, \text{s} \)[/tex].
### Summary
- The final velocity of the bus is [tex]\( 40 \, \text{m/s} \)[/tex].
- The time it takes to cover [tex]\( 1.0 \, \text{km} \)[/tex] is [tex]\( 50 \, \text{s} \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.