Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure! Let's solve the equation step-by-step.
We are given:
[tex]\[ \left( \frac{1}{2} \right)^{-5p} \div \left( \frac{1}{2} \right)^{3p} = \left( \frac{1}{2} \right)^{24} \][/tex]
Step 1: Use properties of exponents to simplify the left side. Recall that dividing exponents with the same base can be converted into subtraction of exponents:
[tex]\[ \left( \frac{1}{2} \right)^{-5p} \div \left( \frac{1}{2} \right)^{3p} = \left( \frac{1}{2} \right)^{-5p - 3p} \][/tex]
Simplifying the exponent on the left side:
[tex]\[ \left( \frac{1}{2} \right)^{-5p - 3p} = \left( \frac{1}{2} \right)^{-8p} \][/tex]
Step 2: Now, we have:
[tex]\[ \left( \frac{1}{2} \right)^{-8p} = \left( \frac{1}{2} \right)^{24} \][/tex]
Step 3: Since the bases are the same, we can set the exponents equal to each other:
[tex]\[ -8p = 24 \][/tex]
Step 4: Solve for [tex]\( p \)[/tex]. To isolate [tex]\( p \)[/tex], divide both sides of the equation by [tex]\(-8\)[/tex]:
[tex]\[ p = \frac{24}{-8} = -3 \][/tex]
Therefore, the value of [tex]\( p \)[/tex] is:
[tex]\[ p = -3.0 \][/tex]
We are given:
[tex]\[ \left( \frac{1}{2} \right)^{-5p} \div \left( \frac{1}{2} \right)^{3p} = \left( \frac{1}{2} \right)^{24} \][/tex]
Step 1: Use properties of exponents to simplify the left side. Recall that dividing exponents with the same base can be converted into subtraction of exponents:
[tex]\[ \left( \frac{1}{2} \right)^{-5p} \div \left( \frac{1}{2} \right)^{3p} = \left( \frac{1}{2} \right)^{-5p - 3p} \][/tex]
Simplifying the exponent on the left side:
[tex]\[ \left( \frac{1}{2} \right)^{-5p - 3p} = \left( \frac{1}{2} \right)^{-8p} \][/tex]
Step 2: Now, we have:
[tex]\[ \left( \frac{1}{2} \right)^{-8p} = \left( \frac{1}{2} \right)^{24} \][/tex]
Step 3: Since the bases are the same, we can set the exponents equal to each other:
[tex]\[ -8p = 24 \][/tex]
Step 4: Solve for [tex]\( p \)[/tex]. To isolate [tex]\( p \)[/tex], divide both sides of the equation by [tex]\(-8\)[/tex]:
[tex]\[ p = \frac{24}{-8} = -3 \][/tex]
Therefore, the value of [tex]\( p \)[/tex] is:
[tex]\[ p = -3.0 \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.