Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Chapter 3: Exponents

31. Simplify:
a) [tex][tex]$8^2 \times 3^{-6} \times \left(2^{-3}\right)^2$[/tex][/tex]


Sagot :

To simplify the expression [tex]\(8^2 \times 3^{-6} \times\left(2^{-3}\right)^2\)[/tex], we will break it down and simplify each part step by step.

1. Simplify [tex]\(8^2\)[/tex]:
[tex]\[ 8^2 = 64 \][/tex]

2. Simplify [tex]\(3^{-6}\)[/tex]:
- A negative exponent indicates that we take the reciprocal of the base raised to the positive exponent.
[tex]\[ 3^{-6} = \frac{1}{3^6} \approx 0.0013717421124828531 \][/tex]

3. Simplify [tex]\(\left(2^{-3}\right)^2\)[/tex]:
- First, simplify inside the parentheses: [tex]\(2^{-3}\)[/tex].
[tex]\[ 2^{-3} = \frac{1}{2^3} = \frac{1}{8} \][/tex]
- Then, raise [tex]\(\frac{1}{8}\)[/tex] to the power of 2.
[tex]\[ \left(\frac{1}{8}\right)^2 = \frac{1}{8^2} = \frac{1}{64} \approx 0.015625 \][/tex]

4. Multiply all the simplified terms:
[tex]\[ 64 \times 0.0013717421124828531 \times 0.015625 \approx 0.0013717421124828531 \][/tex]

Thus, the simplified form of the expression [tex]\(8^2 \times 3^{-6} \times\left(2^{-3}\right)^2\)[/tex] is approximately [tex]\(0.0013717421124828531\)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.