Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the greatest possible integer value of [tex]\( x \)[/tex] for which [tex]\( \sqrt{x-5} \)[/tex] is an imaginary number, let's follow these steps:
1. Understanding Imaginary Numbers: A square root function produces an imaginary number whenever the value inside the square root is negative. Therefore, we need [tex]\( x-5 \)[/tex] to be less than 0 for [tex]\(\sqrt{x-5}\)[/tex] to be imaginary.
2. Setting Up the Inequality: To find when [tex]\(\sqrt{x-5}\)[/tex] is imaginary, we set up the inequality:
[tex]\[ x - 5 < 0 \][/tex]
3. Solving the Inequality: Solving the inequality for [tex]\( x \)[/tex]:
[tex]\[ x - 5 < 0 \implies x < 5 \][/tex]
This tells us that [tex]\( x \)[/tex] must be less than 5 for the square root to be imaginary.
4. Identifying the Greatest Integer: We are looking for the greatest integer that satisfies the inequality [tex]\( x < 5 \)[/tex]. The greatest integer less than 5 is 4.
Thus, the greatest possible integer value of [tex]\( x \)[/tex] for which [tex]\(\sqrt{x-5}\)[/tex] is an imaginary number is:
[tex]\[ \boxed{4} \][/tex]
1. Understanding Imaginary Numbers: A square root function produces an imaginary number whenever the value inside the square root is negative. Therefore, we need [tex]\( x-5 \)[/tex] to be less than 0 for [tex]\(\sqrt{x-5}\)[/tex] to be imaginary.
2. Setting Up the Inequality: To find when [tex]\(\sqrt{x-5}\)[/tex] is imaginary, we set up the inequality:
[tex]\[ x - 5 < 0 \][/tex]
3. Solving the Inequality: Solving the inequality for [tex]\( x \)[/tex]:
[tex]\[ x - 5 < 0 \implies x < 5 \][/tex]
This tells us that [tex]\( x \)[/tex] must be less than 5 for the square root to be imaginary.
4. Identifying the Greatest Integer: We are looking for the greatest integer that satisfies the inequality [tex]\( x < 5 \)[/tex]. The greatest integer less than 5 is 4.
Thus, the greatest possible integer value of [tex]\( x \)[/tex] for which [tex]\(\sqrt{x-5}\)[/tex] is an imaginary number is:
[tex]\[ \boxed{4} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.