Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the interval on which the function [tex]\( g(x) = |x+1| - 7 \)[/tex] is decreasing, let's analyze the transformations applied to the original function [tex]\( f(x) = |x| \)[/tex].
1. Understanding the Absolute Value Function:
The function [tex]\( f(x) = |x| \)[/tex] has a V-shape, with the vertex at [tex]\( x = 0 \)[/tex]. It decreases on the interval [tex]\( (-\infty, 0) \)[/tex] and increases on the interval [tex]\( (0, \infty) \)[/tex].
2. Transformation [tex]\( g(x) = |x+1| - 7 \)[/tex]:
- [tex]\( |x+1| \)[/tex] moves the graph of [tex]\( |x| \)[/tex] to the left by 1 unit. So, the vertex of the absolute value part is now at [tex]\( x = -1 \)[/tex].
- Subtracting 7 shifts the entire graph downward by 7 units, but this vertical shift does not affect the intervals where the function is increasing or decreasing.
3. Vertex of the Transformed Function [tex]\( g(x) \)[/tex]:
The vertex of [tex]\( g(x) = |x+1| - 7 \)[/tex] is at [tex]\( x = -1 \)[/tex]. This is because the transformation [tex]\( |x+1| \)[/tex] changes the location of the minimum point of the absolute value function to [tex]\( x = -1 \)[/tex].
4. Intervals of Decrease:
The function [tex]\( g(x) = |x+1| - 7 \)[/tex] will follow the behavior of the absolute value function [tex]\( |x+1| \)[/tex]. Therefore:
- It will decrease on the interval to the left of the vertex, which is [tex]\( (-\infty, -1) \)[/tex].
- It will increase on the interval to the right of the vertex, which is [tex]\( (-1, \infty) \)[/tex].
From this analysis, the function [tex]\( g(x) \)[/tex] is decreasing on the interval [tex]\( (-\infty, -1) \)[/tex].
Thus, the correct interval is:
[tex]\[ (-\infty, -1) \][/tex]
1. Understanding the Absolute Value Function:
The function [tex]\( f(x) = |x| \)[/tex] has a V-shape, with the vertex at [tex]\( x = 0 \)[/tex]. It decreases on the interval [tex]\( (-\infty, 0) \)[/tex] and increases on the interval [tex]\( (0, \infty) \)[/tex].
2. Transformation [tex]\( g(x) = |x+1| - 7 \)[/tex]:
- [tex]\( |x+1| \)[/tex] moves the graph of [tex]\( |x| \)[/tex] to the left by 1 unit. So, the vertex of the absolute value part is now at [tex]\( x = -1 \)[/tex].
- Subtracting 7 shifts the entire graph downward by 7 units, but this vertical shift does not affect the intervals where the function is increasing or decreasing.
3. Vertex of the Transformed Function [tex]\( g(x) \)[/tex]:
The vertex of [tex]\( g(x) = |x+1| - 7 \)[/tex] is at [tex]\( x = -1 \)[/tex]. This is because the transformation [tex]\( |x+1| \)[/tex] changes the location of the minimum point of the absolute value function to [tex]\( x = -1 \)[/tex].
4. Intervals of Decrease:
The function [tex]\( g(x) = |x+1| - 7 \)[/tex] will follow the behavior of the absolute value function [tex]\( |x+1| \)[/tex]. Therefore:
- It will decrease on the interval to the left of the vertex, which is [tex]\( (-\infty, -1) \)[/tex].
- It will increase on the interval to the right of the vertex, which is [tex]\( (-1, \infty) \)[/tex].
From this analysis, the function [tex]\( g(x) \)[/tex] is decreasing on the interval [tex]\( (-\infty, -1) \)[/tex].
Thus, the correct interval is:
[tex]\[ (-\infty, -1) \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.