Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the inequality [tex]\(\frac{5x + 1}{(x + 1)^2} \leq 1\)[/tex], let's go through a step-by-step solution:
1. Write the Inequality:
[tex]\[\frac{5x + 1}{(x + 1)^2} \leq 1.\][/tex]
2. Subtract 1 from Both Sides:
[tex]\[\frac{5x + 1}{(x + 1)^2} - 1 \leq 0.\][/tex]
3. Combine the Terms on the Left Side:
To combine the terms, we use a common denominator:
[tex]\[\frac{5x + 1}{(x + 1)^2} - \frac{(x + 1)^2}{(x + 1)^2} \leq 0.\][/tex]
This simplifies to:
[tex]\[\frac{5x + 1 - (x + 1)^2}{(x + 1)^2} \leq 0.\][/tex]
4. Simplify the Numerator:
Expand and simplify the numerator:
[tex]\[5x + 1 - (x^2 + 2x + 1) = 5x + 1 - x^2 - 2x - 1 = -x^2 + 3x.\][/tex]
So the inequality becomes:
[tex]\[\frac{-x^2 + 3x}{(x + 1)^2} \leq 0.\][/tex]
5. Factor the Numerator:
Factor [tex]\(-x^2 + 3x\)[/tex]:
[tex]\[-x^2 + 3x = x(3 - x).\][/tex]
The inequality now becomes:
[tex]\[\frac{x(3 - x)}{(x + 1)^2} \leq 0.\][/tex]
6. Determine the Critical Points:
[tex]\[x(3 - x) = 0 \quad \text{and} \quad (x + 1)^2 \neq 0.\][/tex]
The critical points are [tex]\(x = 0\)[/tex] and [tex]\(x = 3\)[/tex]. Note that [tex]\((x + 1)^2 = 0\)[/tex] gives [tex]\(x = -1\)[/tex], which is another critical point affecting the sign changes but does not make the numerator zero.
7. Test Intervals Around Critical Points:
Split the number line based on these points and test the inequality in each interval:
- For [tex]\(x < -1\)[/tex]
- For [tex]\(-1 < x < 0\)[/tex]
- For [tex]\(0 < x < 3\)[/tex]
- For [tex]\(x > 3\)[/tex]
8. Check Sign Changes:
Analyze the sign of the expression [tex]\(\frac{x(3 - x)}{(x + 1)^2}\)[/tex] in the intervals:
- For [tex]\(x < -1\)[/tex]
Both [tex]\(x\)[/tex] and [tex]\(3 - x\)[/tex] are negative, and [tex]\((x + 1)^2\)[/tex] is positive, making the expression positive.
- For [tex]\(-1 < x < 0\)[/tex]
[tex]\(x\)[/tex] is negative, [tex]\(3 - x\)[/tex] is positive, and [tex]\((x + 1)^2\)[/tex] is positive, making the expression negative.
- For [tex]\(0 < x < 3\)[/tex]
Both [tex]\(x\)[/tex] and [tex]\(3 - x\)[/tex] are positive, and [tex]\((x + 1)^2\)[/tex] is positive, making the expression positive.
- For [tex]\(x > 3\)[/tex]
[tex]\(x\)[/tex] and [tex]\(3 - x\)[/tex] are of opposite signs, making the expression negative.
9. Include Boundary Points:
- For [tex]\(x = -1\)[/tex], the denominator becomes zero, and the expression is undefined.
- For [tex]\(x = 0\)[/tex] and [tex]\(x = 3\)[/tex], the numerator is zero, making the entire fraction zero.
10. Combine the Intervals:
From the analysis, the expression [tex]\(\frac{x(3 - x)}{(x + 1)^2} \leq 0\)[/tex] is satisfied for:
- [tex]\(-\infty < x < -1\)[/tex] (open interval, expression positive)
- [tex]\(-1 < x \leq 0\)[/tex] (expression non-positive)
- [tex]\(3 \leq x < \infty\)[/tex] (expression non-positive)
Thus, the set of values of [tex]\(x\)[/tex] that satisfy the inequality is:
[tex]\[\boxed{(-\infty, -1) \cup (-1, 0] \cup [3, \infty)}.\][/tex]
1. Write the Inequality:
[tex]\[\frac{5x + 1}{(x + 1)^2} \leq 1.\][/tex]
2. Subtract 1 from Both Sides:
[tex]\[\frac{5x + 1}{(x + 1)^2} - 1 \leq 0.\][/tex]
3. Combine the Terms on the Left Side:
To combine the terms, we use a common denominator:
[tex]\[\frac{5x + 1}{(x + 1)^2} - \frac{(x + 1)^2}{(x + 1)^2} \leq 0.\][/tex]
This simplifies to:
[tex]\[\frac{5x + 1 - (x + 1)^2}{(x + 1)^2} \leq 0.\][/tex]
4. Simplify the Numerator:
Expand and simplify the numerator:
[tex]\[5x + 1 - (x^2 + 2x + 1) = 5x + 1 - x^2 - 2x - 1 = -x^2 + 3x.\][/tex]
So the inequality becomes:
[tex]\[\frac{-x^2 + 3x}{(x + 1)^2} \leq 0.\][/tex]
5. Factor the Numerator:
Factor [tex]\(-x^2 + 3x\)[/tex]:
[tex]\[-x^2 + 3x = x(3 - x).\][/tex]
The inequality now becomes:
[tex]\[\frac{x(3 - x)}{(x + 1)^2} \leq 0.\][/tex]
6. Determine the Critical Points:
[tex]\[x(3 - x) = 0 \quad \text{and} \quad (x + 1)^2 \neq 0.\][/tex]
The critical points are [tex]\(x = 0\)[/tex] and [tex]\(x = 3\)[/tex]. Note that [tex]\((x + 1)^2 = 0\)[/tex] gives [tex]\(x = -1\)[/tex], which is another critical point affecting the sign changes but does not make the numerator zero.
7. Test Intervals Around Critical Points:
Split the number line based on these points and test the inequality in each interval:
- For [tex]\(x < -1\)[/tex]
- For [tex]\(-1 < x < 0\)[/tex]
- For [tex]\(0 < x < 3\)[/tex]
- For [tex]\(x > 3\)[/tex]
8. Check Sign Changes:
Analyze the sign of the expression [tex]\(\frac{x(3 - x)}{(x + 1)^2}\)[/tex] in the intervals:
- For [tex]\(x < -1\)[/tex]
Both [tex]\(x\)[/tex] and [tex]\(3 - x\)[/tex] are negative, and [tex]\((x + 1)^2\)[/tex] is positive, making the expression positive.
- For [tex]\(-1 < x < 0\)[/tex]
[tex]\(x\)[/tex] is negative, [tex]\(3 - x\)[/tex] is positive, and [tex]\((x + 1)^2\)[/tex] is positive, making the expression negative.
- For [tex]\(0 < x < 3\)[/tex]
Both [tex]\(x\)[/tex] and [tex]\(3 - x\)[/tex] are positive, and [tex]\((x + 1)^2\)[/tex] is positive, making the expression positive.
- For [tex]\(x > 3\)[/tex]
[tex]\(x\)[/tex] and [tex]\(3 - x\)[/tex] are of opposite signs, making the expression negative.
9. Include Boundary Points:
- For [tex]\(x = -1\)[/tex], the denominator becomes zero, and the expression is undefined.
- For [tex]\(x = 0\)[/tex] and [tex]\(x = 3\)[/tex], the numerator is zero, making the entire fraction zero.
10. Combine the Intervals:
From the analysis, the expression [tex]\(\frac{x(3 - x)}{(x + 1)^2} \leq 0\)[/tex] is satisfied for:
- [tex]\(-\infty < x < -1\)[/tex] (open interval, expression positive)
- [tex]\(-1 < x \leq 0\)[/tex] (expression non-positive)
- [tex]\(3 \leq x < \infty\)[/tex] (expression non-positive)
Thus, the set of values of [tex]\(x\)[/tex] that satisfy the inequality is:
[tex]\[\boxed{(-\infty, -1) \cup (-1, 0] \cup [3, \infty)}.\][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.