Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Here is a detailed step-by-step solution to your assignment problem regarding the monthly salary data:
### Given Salaries:
580, 620, 700, 830, 910, 620, 700, 830, 860, 1020
### Step 1: Calculate the Range
The range of a data set is calculated as the difference between the maximum and minimum values.
- Minimum salary: 580
- Maximum salary: 1020
[tex]\[ \text{Range} = \text{Maximum} - \text{Minimum} = 1020 - 580 = 440 \][/tex]
### Step 2: Calculate the Mean Salary
The mean salary is the average of all the salaries.
[tex]\[ \text{Mean Salary} = \frac{\sum \text{Salaries}}{\text{Number of Salaries}} \][/tex]
Summing up all the salaries:
[tex]\[ 580 + 620 + 700 + 830 + 910 + 620 + 700 + 830 + 860 + 1020 = 7670 \][/tex]
There are 10 salaries in total:
[tex]\[ \text{Mean Salary} = \frac{7670}{10} = 767.0 \][/tex]
### Step 3: Calculate the Standard Deviation of the Salaries
Standard deviation measures the dispersion or spread of salaries around the mean. It is calculated using the formula:
[tex]\[ \sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}} \][/tex]
Where:
- [tex]\(x_i\)[/tex] are the individual salary values.
- [tex]\(\mu\)[/tex] is the mean salary.
- [tex]\(N\)[/tex] is the total number of salaries.
First, calculate the variance:
[tex]\[ \text{Variance} = \frac{\sum (x_i - \mu)^2}{N} \][/tex]
Using the mean of 767.0, we find:
[tex]\[ \begin{aligned} (580 - 767.0)^2 = 34969.0 \\ (620 - 767.0)^2 = 21609.0 \\ (700 - 767.0)^2 = 4489.0 \\ (830 - 767.0)^2 = 3969.0 \\ (910 - 767.0)^2 = 20449.0 \\ (620 - 767.0)^2 = 21609.0 \\ (700 - 767.0)^2 = 4489.0 \\ (830 - 767.0)^2 = 3969.0 \\ (860 - 767.0)^2 = 8649.0 \\ (1020 - 767.0)^2 = 63889.0 \\ \end{aligned} \][/tex]
Summing these squared differences:
[tex]\[ 34969.0 + 21609.0 + 4489.0 + 3969.0 + 20449.0 + 21609.0 + 4489.0 + 3969.0 + 8649.0 + 63889.0 = 188090.0 \][/tex]
Now, divide by the number of salaries (10):
[tex]\[ \text{Variance} = \frac{188090.0}{10} = 18809.0 \][/tex]
Finally, the standard deviation:
[tex]\[ \sigma = \sqrt{18809.0} \approx 137.19 \][/tex]
### Step 4: Increase Each Salary by 20% and Calculate New Mean and Standard Deviation
To find the new salaries after a 20% increase:
[tex]\[ \begin{aligned} 580 \times 1.2 = 696 \\ 620 \times 1.2 = 744 \\ 700 \times 1.2 = 840 \\ 830 \times 1.2 = 996 \\ 910 \times 1.2 = 1092 \\ 620 \times 1.2 = 744 \\ 700 \times 1.2 = 840 \\ 830 \times 1.2 = 996 \\ 860 \times 1.2 = 1032 \\ 1020 \times 1.2 = 1224 \\ \end{aligned} \][/tex]
### New Mean Salary:
[tex]\[ \text{New Mean Salary} = \frac{\sum \text{Increased Salaries}}{\text{Number of Salaries}} \][/tex]
Summing the new salaries:
[tex]\[ 696 + 744 + 840 + 996 + 1092 + 744 + 840 + 996 + 1032 + 1224 = 9204 \][/tex]
Divide by the number of salaries (10):
[tex]\[ \text{New Mean Salary} = \frac{9204}{10} = 920.4 \][/tex]
### New Standard Deviation:
First, calculate the variance for the increased salaries using the new mean of 920.4:
[tex]\[ \begin{aligned} (696 - 920.4)^2 = 50193.76 \\ (744 - 920.4)^2 = 31032.96 \\ (840 - 920.4)^2 = 6465.16 \\ (996 - 920.4)^2 = 5718.76 \\ (1092 - 920.4)^2 = 29447.36 \\ (744 - 920.4)^2 = 31032.96 \\ (840 - 920.4)^2 = 6465.16 \\ (996 - 920.4)^2 = 5718.76 \\ (1032 - 920.4)^2 = 12482.56 \\ (1224 - 920.4)^2 = 91871.36 \\ \end{aligned} \][/tex]
Summing these squared differences:
[tex]\[ 50193.76 + 31032.96 + 6465.16 + 5718.76 + 29447.36 + 31032.96 + 6465.16 + 5718.76 + 12482.56 + 91871.36 = 271429.04 \][/tex]
Divide by the number of salaries (10):
[tex]\[ \text{Variance} = \frac{271429.04}{10} = 27142.904 \][/tex]
Finally, the new standard deviation:
[tex]\[ \sigma = \sqrt{27142.904} \approx 164.63 \][/tex]
### Summary:
- Range: 440
- Mean Salary: 767.0
- Standard Deviation: 137.19
- New Mean Salary (after 20% increase): 920.4
- New Standard Deviation (after 20% increase): 164.63
### Given Salaries:
580, 620, 700, 830, 910, 620, 700, 830, 860, 1020
### Step 1: Calculate the Range
The range of a data set is calculated as the difference between the maximum and minimum values.
- Minimum salary: 580
- Maximum salary: 1020
[tex]\[ \text{Range} = \text{Maximum} - \text{Minimum} = 1020 - 580 = 440 \][/tex]
### Step 2: Calculate the Mean Salary
The mean salary is the average of all the salaries.
[tex]\[ \text{Mean Salary} = \frac{\sum \text{Salaries}}{\text{Number of Salaries}} \][/tex]
Summing up all the salaries:
[tex]\[ 580 + 620 + 700 + 830 + 910 + 620 + 700 + 830 + 860 + 1020 = 7670 \][/tex]
There are 10 salaries in total:
[tex]\[ \text{Mean Salary} = \frac{7670}{10} = 767.0 \][/tex]
### Step 3: Calculate the Standard Deviation of the Salaries
Standard deviation measures the dispersion or spread of salaries around the mean. It is calculated using the formula:
[tex]\[ \sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}} \][/tex]
Where:
- [tex]\(x_i\)[/tex] are the individual salary values.
- [tex]\(\mu\)[/tex] is the mean salary.
- [tex]\(N\)[/tex] is the total number of salaries.
First, calculate the variance:
[tex]\[ \text{Variance} = \frac{\sum (x_i - \mu)^2}{N} \][/tex]
Using the mean of 767.0, we find:
[tex]\[ \begin{aligned} (580 - 767.0)^2 = 34969.0 \\ (620 - 767.0)^2 = 21609.0 \\ (700 - 767.0)^2 = 4489.0 \\ (830 - 767.0)^2 = 3969.0 \\ (910 - 767.0)^2 = 20449.0 \\ (620 - 767.0)^2 = 21609.0 \\ (700 - 767.0)^2 = 4489.0 \\ (830 - 767.0)^2 = 3969.0 \\ (860 - 767.0)^2 = 8649.0 \\ (1020 - 767.0)^2 = 63889.0 \\ \end{aligned} \][/tex]
Summing these squared differences:
[tex]\[ 34969.0 + 21609.0 + 4489.0 + 3969.0 + 20449.0 + 21609.0 + 4489.0 + 3969.0 + 8649.0 + 63889.0 = 188090.0 \][/tex]
Now, divide by the number of salaries (10):
[tex]\[ \text{Variance} = \frac{188090.0}{10} = 18809.0 \][/tex]
Finally, the standard deviation:
[tex]\[ \sigma = \sqrt{18809.0} \approx 137.19 \][/tex]
### Step 4: Increase Each Salary by 20% and Calculate New Mean and Standard Deviation
To find the new salaries after a 20% increase:
[tex]\[ \begin{aligned} 580 \times 1.2 = 696 \\ 620 \times 1.2 = 744 \\ 700 \times 1.2 = 840 \\ 830 \times 1.2 = 996 \\ 910 \times 1.2 = 1092 \\ 620 \times 1.2 = 744 \\ 700 \times 1.2 = 840 \\ 830 \times 1.2 = 996 \\ 860 \times 1.2 = 1032 \\ 1020 \times 1.2 = 1224 \\ \end{aligned} \][/tex]
### New Mean Salary:
[tex]\[ \text{New Mean Salary} = \frac{\sum \text{Increased Salaries}}{\text{Number of Salaries}} \][/tex]
Summing the new salaries:
[tex]\[ 696 + 744 + 840 + 996 + 1092 + 744 + 840 + 996 + 1032 + 1224 = 9204 \][/tex]
Divide by the number of salaries (10):
[tex]\[ \text{New Mean Salary} = \frac{9204}{10} = 920.4 \][/tex]
### New Standard Deviation:
First, calculate the variance for the increased salaries using the new mean of 920.4:
[tex]\[ \begin{aligned} (696 - 920.4)^2 = 50193.76 \\ (744 - 920.4)^2 = 31032.96 \\ (840 - 920.4)^2 = 6465.16 \\ (996 - 920.4)^2 = 5718.76 \\ (1092 - 920.4)^2 = 29447.36 \\ (744 - 920.4)^2 = 31032.96 \\ (840 - 920.4)^2 = 6465.16 \\ (996 - 920.4)^2 = 5718.76 \\ (1032 - 920.4)^2 = 12482.56 \\ (1224 - 920.4)^2 = 91871.36 \\ \end{aligned} \][/tex]
Summing these squared differences:
[tex]\[ 50193.76 + 31032.96 + 6465.16 + 5718.76 + 29447.36 + 31032.96 + 6465.16 + 5718.76 + 12482.56 + 91871.36 = 271429.04 \][/tex]
Divide by the number of salaries (10):
[tex]\[ \text{Variance} = \frac{271429.04}{10} = 27142.904 \][/tex]
Finally, the new standard deviation:
[tex]\[ \sigma = \sqrt{27142.904} \approx 164.63 \][/tex]
### Summary:
- Range: 440
- Mean Salary: 767.0
- Standard Deviation: 137.19
- New Mean Salary (after 20% increase): 920.4
- New Standard Deviation (after 20% increase): 164.63
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.