Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! Here is a detailed step-by-step solution to your assignment problem regarding the monthly salary data:
### Given Salaries:
580, 620, 700, 830, 910, 620, 700, 830, 860, 1020
### Step 1: Calculate the Range
The range of a data set is calculated as the difference between the maximum and minimum values.
- Minimum salary: 580
- Maximum salary: 1020
[tex]\[ \text{Range} = \text{Maximum} - \text{Minimum} = 1020 - 580 = 440 \][/tex]
### Step 2: Calculate the Mean Salary
The mean salary is the average of all the salaries.
[tex]\[ \text{Mean Salary} = \frac{\sum \text{Salaries}}{\text{Number of Salaries}} \][/tex]
Summing up all the salaries:
[tex]\[ 580 + 620 + 700 + 830 + 910 + 620 + 700 + 830 + 860 + 1020 = 7670 \][/tex]
There are 10 salaries in total:
[tex]\[ \text{Mean Salary} = \frac{7670}{10} = 767.0 \][/tex]
### Step 3: Calculate the Standard Deviation of the Salaries
Standard deviation measures the dispersion or spread of salaries around the mean. It is calculated using the formula:
[tex]\[ \sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}} \][/tex]
Where:
- [tex]\(x_i\)[/tex] are the individual salary values.
- [tex]\(\mu\)[/tex] is the mean salary.
- [tex]\(N\)[/tex] is the total number of salaries.
First, calculate the variance:
[tex]\[ \text{Variance} = \frac{\sum (x_i - \mu)^2}{N} \][/tex]
Using the mean of 767.0, we find:
[tex]\[ \begin{aligned} (580 - 767.0)^2 = 34969.0 \\ (620 - 767.0)^2 = 21609.0 \\ (700 - 767.0)^2 = 4489.0 \\ (830 - 767.0)^2 = 3969.0 \\ (910 - 767.0)^2 = 20449.0 \\ (620 - 767.0)^2 = 21609.0 \\ (700 - 767.0)^2 = 4489.0 \\ (830 - 767.0)^2 = 3969.0 \\ (860 - 767.0)^2 = 8649.0 \\ (1020 - 767.0)^2 = 63889.0 \\ \end{aligned} \][/tex]
Summing these squared differences:
[tex]\[ 34969.0 + 21609.0 + 4489.0 + 3969.0 + 20449.0 + 21609.0 + 4489.0 + 3969.0 + 8649.0 + 63889.0 = 188090.0 \][/tex]
Now, divide by the number of salaries (10):
[tex]\[ \text{Variance} = \frac{188090.0}{10} = 18809.0 \][/tex]
Finally, the standard deviation:
[tex]\[ \sigma = \sqrt{18809.0} \approx 137.19 \][/tex]
### Step 4: Increase Each Salary by 20% and Calculate New Mean and Standard Deviation
To find the new salaries after a 20% increase:
[tex]\[ \begin{aligned} 580 \times 1.2 = 696 \\ 620 \times 1.2 = 744 \\ 700 \times 1.2 = 840 \\ 830 \times 1.2 = 996 \\ 910 \times 1.2 = 1092 \\ 620 \times 1.2 = 744 \\ 700 \times 1.2 = 840 \\ 830 \times 1.2 = 996 \\ 860 \times 1.2 = 1032 \\ 1020 \times 1.2 = 1224 \\ \end{aligned} \][/tex]
### New Mean Salary:
[tex]\[ \text{New Mean Salary} = \frac{\sum \text{Increased Salaries}}{\text{Number of Salaries}} \][/tex]
Summing the new salaries:
[tex]\[ 696 + 744 + 840 + 996 + 1092 + 744 + 840 + 996 + 1032 + 1224 = 9204 \][/tex]
Divide by the number of salaries (10):
[tex]\[ \text{New Mean Salary} = \frac{9204}{10} = 920.4 \][/tex]
### New Standard Deviation:
First, calculate the variance for the increased salaries using the new mean of 920.4:
[tex]\[ \begin{aligned} (696 - 920.4)^2 = 50193.76 \\ (744 - 920.4)^2 = 31032.96 \\ (840 - 920.4)^2 = 6465.16 \\ (996 - 920.4)^2 = 5718.76 \\ (1092 - 920.4)^2 = 29447.36 \\ (744 - 920.4)^2 = 31032.96 \\ (840 - 920.4)^2 = 6465.16 \\ (996 - 920.4)^2 = 5718.76 \\ (1032 - 920.4)^2 = 12482.56 \\ (1224 - 920.4)^2 = 91871.36 \\ \end{aligned} \][/tex]
Summing these squared differences:
[tex]\[ 50193.76 + 31032.96 + 6465.16 + 5718.76 + 29447.36 + 31032.96 + 6465.16 + 5718.76 + 12482.56 + 91871.36 = 271429.04 \][/tex]
Divide by the number of salaries (10):
[tex]\[ \text{Variance} = \frac{271429.04}{10} = 27142.904 \][/tex]
Finally, the new standard deviation:
[tex]\[ \sigma = \sqrt{27142.904} \approx 164.63 \][/tex]
### Summary:
- Range: 440
- Mean Salary: 767.0
- Standard Deviation: 137.19
- New Mean Salary (after 20% increase): 920.4
- New Standard Deviation (after 20% increase): 164.63
### Given Salaries:
580, 620, 700, 830, 910, 620, 700, 830, 860, 1020
### Step 1: Calculate the Range
The range of a data set is calculated as the difference between the maximum and minimum values.
- Minimum salary: 580
- Maximum salary: 1020
[tex]\[ \text{Range} = \text{Maximum} - \text{Minimum} = 1020 - 580 = 440 \][/tex]
### Step 2: Calculate the Mean Salary
The mean salary is the average of all the salaries.
[tex]\[ \text{Mean Salary} = \frac{\sum \text{Salaries}}{\text{Number of Salaries}} \][/tex]
Summing up all the salaries:
[tex]\[ 580 + 620 + 700 + 830 + 910 + 620 + 700 + 830 + 860 + 1020 = 7670 \][/tex]
There are 10 salaries in total:
[tex]\[ \text{Mean Salary} = \frac{7670}{10} = 767.0 \][/tex]
### Step 3: Calculate the Standard Deviation of the Salaries
Standard deviation measures the dispersion or spread of salaries around the mean. It is calculated using the formula:
[tex]\[ \sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}} \][/tex]
Where:
- [tex]\(x_i\)[/tex] are the individual salary values.
- [tex]\(\mu\)[/tex] is the mean salary.
- [tex]\(N\)[/tex] is the total number of salaries.
First, calculate the variance:
[tex]\[ \text{Variance} = \frac{\sum (x_i - \mu)^2}{N} \][/tex]
Using the mean of 767.0, we find:
[tex]\[ \begin{aligned} (580 - 767.0)^2 = 34969.0 \\ (620 - 767.0)^2 = 21609.0 \\ (700 - 767.0)^2 = 4489.0 \\ (830 - 767.0)^2 = 3969.0 \\ (910 - 767.0)^2 = 20449.0 \\ (620 - 767.0)^2 = 21609.0 \\ (700 - 767.0)^2 = 4489.0 \\ (830 - 767.0)^2 = 3969.0 \\ (860 - 767.0)^2 = 8649.0 \\ (1020 - 767.0)^2 = 63889.0 \\ \end{aligned} \][/tex]
Summing these squared differences:
[tex]\[ 34969.0 + 21609.0 + 4489.0 + 3969.0 + 20449.0 + 21609.0 + 4489.0 + 3969.0 + 8649.0 + 63889.0 = 188090.0 \][/tex]
Now, divide by the number of salaries (10):
[tex]\[ \text{Variance} = \frac{188090.0}{10} = 18809.0 \][/tex]
Finally, the standard deviation:
[tex]\[ \sigma = \sqrt{18809.0} \approx 137.19 \][/tex]
### Step 4: Increase Each Salary by 20% and Calculate New Mean and Standard Deviation
To find the new salaries after a 20% increase:
[tex]\[ \begin{aligned} 580 \times 1.2 = 696 \\ 620 \times 1.2 = 744 \\ 700 \times 1.2 = 840 \\ 830 \times 1.2 = 996 \\ 910 \times 1.2 = 1092 \\ 620 \times 1.2 = 744 \\ 700 \times 1.2 = 840 \\ 830 \times 1.2 = 996 \\ 860 \times 1.2 = 1032 \\ 1020 \times 1.2 = 1224 \\ \end{aligned} \][/tex]
### New Mean Salary:
[tex]\[ \text{New Mean Salary} = \frac{\sum \text{Increased Salaries}}{\text{Number of Salaries}} \][/tex]
Summing the new salaries:
[tex]\[ 696 + 744 + 840 + 996 + 1092 + 744 + 840 + 996 + 1032 + 1224 = 9204 \][/tex]
Divide by the number of salaries (10):
[tex]\[ \text{New Mean Salary} = \frac{9204}{10} = 920.4 \][/tex]
### New Standard Deviation:
First, calculate the variance for the increased salaries using the new mean of 920.4:
[tex]\[ \begin{aligned} (696 - 920.4)^2 = 50193.76 \\ (744 - 920.4)^2 = 31032.96 \\ (840 - 920.4)^2 = 6465.16 \\ (996 - 920.4)^2 = 5718.76 \\ (1092 - 920.4)^2 = 29447.36 \\ (744 - 920.4)^2 = 31032.96 \\ (840 - 920.4)^2 = 6465.16 \\ (996 - 920.4)^2 = 5718.76 \\ (1032 - 920.4)^2 = 12482.56 \\ (1224 - 920.4)^2 = 91871.36 \\ \end{aligned} \][/tex]
Summing these squared differences:
[tex]\[ 50193.76 + 31032.96 + 6465.16 + 5718.76 + 29447.36 + 31032.96 + 6465.16 + 5718.76 + 12482.56 + 91871.36 = 271429.04 \][/tex]
Divide by the number of salaries (10):
[tex]\[ \text{Variance} = \frac{271429.04}{10} = 27142.904 \][/tex]
Finally, the new standard deviation:
[tex]\[ \sigma = \sqrt{27142.904} \approx 164.63 \][/tex]
### Summary:
- Range: 440
- Mean Salary: 767.0
- Standard Deviation: 137.19
- New Mean Salary (after 20% increase): 920.4
- New Standard Deviation (after 20% increase): 164.63
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.