At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Here is a detailed step-by-step solution to your assignment problem regarding the monthly salary data:
### Given Salaries:
580, 620, 700, 830, 910, 620, 700, 830, 860, 1020
### Step 1: Calculate the Range
The range of a data set is calculated as the difference between the maximum and minimum values.
- Minimum salary: 580
- Maximum salary: 1020
[tex]\[ \text{Range} = \text{Maximum} - \text{Minimum} = 1020 - 580 = 440 \][/tex]
### Step 2: Calculate the Mean Salary
The mean salary is the average of all the salaries.
[tex]\[ \text{Mean Salary} = \frac{\sum \text{Salaries}}{\text{Number of Salaries}} \][/tex]
Summing up all the salaries:
[tex]\[ 580 + 620 + 700 + 830 + 910 + 620 + 700 + 830 + 860 + 1020 = 7670 \][/tex]
There are 10 salaries in total:
[tex]\[ \text{Mean Salary} = \frac{7670}{10} = 767.0 \][/tex]
### Step 3: Calculate the Standard Deviation of the Salaries
Standard deviation measures the dispersion or spread of salaries around the mean. It is calculated using the formula:
[tex]\[ \sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}} \][/tex]
Where:
- [tex]\(x_i\)[/tex] are the individual salary values.
- [tex]\(\mu\)[/tex] is the mean salary.
- [tex]\(N\)[/tex] is the total number of salaries.
First, calculate the variance:
[tex]\[ \text{Variance} = \frac{\sum (x_i - \mu)^2}{N} \][/tex]
Using the mean of 767.0, we find:
[tex]\[ \begin{aligned} (580 - 767.0)^2 = 34969.0 \\ (620 - 767.0)^2 = 21609.0 \\ (700 - 767.0)^2 = 4489.0 \\ (830 - 767.0)^2 = 3969.0 \\ (910 - 767.0)^2 = 20449.0 \\ (620 - 767.0)^2 = 21609.0 \\ (700 - 767.0)^2 = 4489.0 \\ (830 - 767.0)^2 = 3969.0 \\ (860 - 767.0)^2 = 8649.0 \\ (1020 - 767.0)^2 = 63889.0 \\ \end{aligned} \][/tex]
Summing these squared differences:
[tex]\[ 34969.0 + 21609.0 + 4489.0 + 3969.0 + 20449.0 + 21609.0 + 4489.0 + 3969.0 + 8649.0 + 63889.0 = 188090.0 \][/tex]
Now, divide by the number of salaries (10):
[tex]\[ \text{Variance} = \frac{188090.0}{10} = 18809.0 \][/tex]
Finally, the standard deviation:
[tex]\[ \sigma = \sqrt{18809.0} \approx 137.19 \][/tex]
### Step 4: Increase Each Salary by 20% and Calculate New Mean and Standard Deviation
To find the new salaries after a 20% increase:
[tex]\[ \begin{aligned} 580 \times 1.2 = 696 \\ 620 \times 1.2 = 744 \\ 700 \times 1.2 = 840 \\ 830 \times 1.2 = 996 \\ 910 \times 1.2 = 1092 \\ 620 \times 1.2 = 744 \\ 700 \times 1.2 = 840 \\ 830 \times 1.2 = 996 \\ 860 \times 1.2 = 1032 \\ 1020 \times 1.2 = 1224 \\ \end{aligned} \][/tex]
### New Mean Salary:
[tex]\[ \text{New Mean Salary} = \frac{\sum \text{Increased Salaries}}{\text{Number of Salaries}} \][/tex]
Summing the new salaries:
[tex]\[ 696 + 744 + 840 + 996 + 1092 + 744 + 840 + 996 + 1032 + 1224 = 9204 \][/tex]
Divide by the number of salaries (10):
[tex]\[ \text{New Mean Salary} = \frac{9204}{10} = 920.4 \][/tex]
### New Standard Deviation:
First, calculate the variance for the increased salaries using the new mean of 920.4:
[tex]\[ \begin{aligned} (696 - 920.4)^2 = 50193.76 \\ (744 - 920.4)^2 = 31032.96 \\ (840 - 920.4)^2 = 6465.16 \\ (996 - 920.4)^2 = 5718.76 \\ (1092 - 920.4)^2 = 29447.36 \\ (744 - 920.4)^2 = 31032.96 \\ (840 - 920.4)^2 = 6465.16 \\ (996 - 920.4)^2 = 5718.76 \\ (1032 - 920.4)^2 = 12482.56 \\ (1224 - 920.4)^2 = 91871.36 \\ \end{aligned} \][/tex]
Summing these squared differences:
[tex]\[ 50193.76 + 31032.96 + 6465.16 + 5718.76 + 29447.36 + 31032.96 + 6465.16 + 5718.76 + 12482.56 + 91871.36 = 271429.04 \][/tex]
Divide by the number of salaries (10):
[tex]\[ \text{Variance} = \frac{271429.04}{10} = 27142.904 \][/tex]
Finally, the new standard deviation:
[tex]\[ \sigma = \sqrt{27142.904} \approx 164.63 \][/tex]
### Summary:
- Range: 440
- Mean Salary: 767.0
- Standard Deviation: 137.19
- New Mean Salary (after 20% increase): 920.4
- New Standard Deviation (after 20% increase): 164.63
### Given Salaries:
580, 620, 700, 830, 910, 620, 700, 830, 860, 1020
### Step 1: Calculate the Range
The range of a data set is calculated as the difference between the maximum and minimum values.
- Minimum salary: 580
- Maximum salary: 1020
[tex]\[ \text{Range} = \text{Maximum} - \text{Minimum} = 1020 - 580 = 440 \][/tex]
### Step 2: Calculate the Mean Salary
The mean salary is the average of all the salaries.
[tex]\[ \text{Mean Salary} = \frac{\sum \text{Salaries}}{\text{Number of Salaries}} \][/tex]
Summing up all the salaries:
[tex]\[ 580 + 620 + 700 + 830 + 910 + 620 + 700 + 830 + 860 + 1020 = 7670 \][/tex]
There are 10 salaries in total:
[tex]\[ \text{Mean Salary} = \frac{7670}{10} = 767.0 \][/tex]
### Step 3: Calculate the Standard Deviation of the Salaries
Standard deviation measures the dispersion or spread of salaries around the mean. It is calculated using the formula:
[tex]\[ \sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}} \][/tex]
Where:
- [tex]\(x_i\)[/tex] are the individual salary values.
- [tex]\(\mu\)[/tex] is the mean salary.
- [tex]\(N\)[/tex] is the total number of salaries.
First, calculate the variance:
[tex]\[ \text{Variance} = \frac{\sum (x_i - \mu)^2}{N} \][/tex]
Using the mean of 767.0, we find:
[tex]\[ \begin{aligned} (580 - 767.0)^2 = 34969.0 \\ (620 - 767.0)^2 = 21609.0 \\ (700 - 767.0)^2 = 4489.0 \\ (830 - 767.0)^2 = 3969.0 \\ (910 - 767.0)^2 = 20449.0 \\ (620 - 767.0)^2 = 21609.0 \\ (700 - 767.0)^2 = 4489.0 \\ (830 - 767.0)^2 = 3969.0 \\ (860 - 767.0)^2 = 8649.0 \\ (1020 - 767.0)^2 = 63889.0 \\ \end{aligned} \][/tex]
Summing these squared differences:
[tex]\[ 34969.0 + 21609.0 + 4489.0 + 3969.0 + 20449.0 + 21609.0 + 4489.0 + 3969.0 + 8649.0 + 63889.0 = 188090.0 \][/tex]
Now, divide by the number of salaries (10):
[tex]\[ \text{Variance} = \frac{188090.0}{10} = 18809.0 \][/tex]
Finally, the standard deviation:
[tex]\[ \sigma = \sqrt{18809.0} \approx 137.19 \][/tex]
### Step 4: Increase Each Salary by 20% and Calculate New Mean and Standard Deviation
To find the new salaries after a 20% increase:
[tex]\[ \begin{aligned} 580 \times 1.2 = 696 \\ 620 \times 1.2 = 744 \\ 700 \times 1.2 = 840 \\ 830 \times 1.2 = 996 \\ 910 \times 1.2 = 1092 \\ 620 \times 1.2 = 744 \\ 700 \times 1.2 = 840 \\ 830 \times 1.2 = 996 \\ 860 \times 1.2 = 1032 \\ 1020 \times 1.2 = 1224 \\ \end{aligned} \][/tex]
### New Mean Salary:
[tex]\[ \text{New Mean Salary} = \frac{\sum \text{Increased Salaries}}{\text{Number of Salaries}} \][/tex]
Summing the new salaries:
[tex]\[ 696 + 744 + 840 + 996 + 1092 + 744 + 840 + 996 + 1032 + 1224 = 9204 \][/tex]
Divide by the number of salaries (10):
[tex]\[ \text{New Mean Salary} = \frac{9204}{10} = 920.4 \][/tex]
### New Standard Deviation:
First, calculate the variance for the increased salaries using the new mean of 920.4:
[tex]\[ \begin{aligned} (696 - 920.4)^2 = 50193.76 \\ (744 - 920.4)^2 = 31032.96 \\ (840 - 920.4)^2 = 6465.16 \\ (996 - 920.4)^2 = 5718.76 \\ (1092 - 920.4)^2 = 29447.36 \\ (744 - 920.4)^2 = 31032.96 \\ (840 - 920.4)^2 = 6465.16 \\ (996 - 920.4)^2 = 5718.76 \\ (1032 - 920.4)^2 = 12482.56 \\ (1224 - 920.4)^2 = 91871.36 \\ \end{aligned} \][/tex]
Summing these squared differences:
[tex]\[ 50193.76 + 31032.96 + 6465.16 + 5718.76 + 29447.36 + 31032.96 + 6465.16 + 5718.76 + 12482.56 + 91871.36 = 271429.04 \][/tex]
Divide by the number of salaries (10):
[tex]\[ \text{Variance} = \frac{271429.04}{10} = 27142.904 \][/tex]
Finally, the new standard deviation:
[tex]\[ \sigma = \sqrt{27142.904} \approx 164.63 \][/tex]
### Summary:
- Range: 440
- Mean Salary: 767.0
- Standard Deviation: 137.19
- New Mean Salary (after 20% increase): 920.4
- New Standard Deviation (after 20% increase): 164.63
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.