Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the probability that the service was good given that the meal was lunch, we need to use the concept of conditional probability.
The probability of an event [tex]\( A \)[/tex] occurring given that event [tex]\( B \)[/tex] has occurred can be calculated using the formula:
[tex]\[ P(A|B) = \frac{P(A \cap B)}{P(B)} \][/tex]
In this problem, we want to find the probability that the service was good (event [tex]\( A \)[/tex]) given that the meal was lunch (event [tex]\( B \)[/tex]).
From the table, we observe the following:
- The number of times the service was good during lunch ([tex]\( A \cap B \)[/tex]) = 22.
- The total number of lunch meals ([tex]\( B \)[/tex]) = 72.
So, we calculate the probability as:
[tex]\[ P(\text{Service good | Lunch}) = \frac{\text{Number of times service was good during lunch}}{\text{Total number of lunch meals}} = \frac{22}{72} \][/tex]
Simplifying the fraction:
[tex]\[ \frac{22}{72} = \frac{11}{36} \][/tex]
Thus, the probability that the service was good given that the meal was lunch is:
[tex]\[ \boxed{\frac{11}{36}} \][/tex]
The probability of an event [tex]\( A \)[/tex] occurring given that event [tex]\( B \)[/tex] has occurred can be calculated using the formula:
[tex]\[ P(A|B) = \frac{P(A \cap B)}{P(B)} \][/tex]
In this problem, we want to find the probability that the service was good (event [tex]\( A \)[/tex]) given that the meal was lunch (event [tex]\( B \)[/tex]).
From the table, we observe the following:
- The number of times the service was good during lunch ([tex]\( A \cap B \)[/tex]) = 22.
- The total number of lunch meals ([tex]\( B \)[/tex]) = 72.
So, we calculate the probability as:
[tex]\[ P(\text{Service good | Lunch}) = \frac{\text{Number of times service was good during lunch}}{\text{Total number of lunch meals}} = \frac{22}{72} \][/tex]
Simplifying the fraction:
[tex]\[ \frac{22}{72} = \frac{11}{36} \][/tex]
Thus, the probability that the service was good given that the meal was lunch is:
[tex]\[ \boxed{\frac{11}{36}} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.