Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To convert the repeating decimal [tex]\(7.\overline{4}\)[/tex] to a fraction, follow these steps:
1. Let [tex]\( x \)[/tex] represent the repeating decimal: [tex]\( x = 7.\overline{4} \)[/tex].
2. To isolate the repeating part, multiply [tex]\( x \)[/tex] by 10. This gives us:
[tex]\[ 10x = 74.\overline{4} \][/tex]
3. Now we have two equations:
[tex]\[ \begin{cases} x = 7.\overline{4} \\ 10x = 74.\overline{4} \end{cases} \][/tex]
4. Subtract the first equation from the second equation to get rid of the repeating part:
[tex]\[ 10x - x = 74.\overline{4} - 7.\overline{4} \][/tex]
5. Simplifying the left side and the right side results in:
[tex]\[ 9x = 67 \][/tex]
6. Solve for [tex]\( x \)[/tex] by dividing both sides by 9:
[tex]\[ x = \frac{67}{9} \][/tex]
Thus, the repeating decimal [tex]\(7.\overline{4}\)[/tex] converts to the fraction [tex]\(\frac{67}{9}\)[/tex].
To summarize, the fraction in its simplest form representing the repeating decimal [tex]\(7.\overline{4}\)[/tex] is [tex]\( \frac{67}{9} \)[/tex], and the repeating decimal part [tex]\(7.444444\)[/tex] simplifies directly to this fraction.
1. Let [tex]\( x \)[/tex] represent the repeating decimal: [tex]\( x = 7.\overline{4} \)[/tex].
2. To isolate the repeating part, multiply [tex]\( x \)[/tex] by 10. This gives us:
[tex]\[ 10x = 74.\overline{4} \][/tex]
3. Now we have two equations:
[tex]\[ \begin{cases} x = 7.\overline{4} \\ 10x = 74.\overline{4} \end{cases} \][/tex]
4. Subtract the first equation from the second equation to get rid of the repeating part:
[tex]\[ 10x - x = 74.\overline{4} - 7.\overline{4} \][/tex]
5. Simplifying the left side and the right side results in:
[tex]\[ 9x = 67 \][/tex]
6. Solve for [tex]\( x \)[/tex] by dividing both sides by 9:
[tex]\[ x = \frac{67}{9} \][/tex]
Thus, the repeating decimal [tex]\(7.\overline{4}\)[/tex] converts to the fraction [tex]\(\frac{67}{9}\)[/tex].
To summarize, the fraction in its simplest form representing the repeating decimal [tex]\(7.\overline{4}\)[/tex] is [tex]\( \frac{67}{9} \)[/tex], and the repeating decimal part [tex]\(7.444444\)[/tex] simplifies directly to this fraction.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.