Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Solve the inequality [tex][tex]$7x - 35 \ \textless \ 2(x - 5)$[/tex][/tex].

Optional working:

Answer: ______________

Sagot :

To solve the inequality [tex]\(7x - 35 < 2(x - 5)\)[/tex], we need to follow a step-by-step process:

Step 1: Distribute the term on the right side.
[tex]\[ 7x - 35 < 2(x - 5) \][/tex]
Distribute the 2 to both terms inside the parentheses:
[tex]\[ 7x - 35 < 2x - 10 \][/tex]

Step 2: Move all terms involving [tex]\(x\)[/tex] to one side of the inequality.
Subtract [tex]\(2x\)[/tex] from both sides to isolate [tex]\(x\)[/tex] on one side:
[tex]\[ 7x - 2x - 35 < -10 \][/tex]

Step 3: Simplify the terms.
Combine like terms:
[tex]\[ 5x - 35 < -10 \][/tex]

Step 4: Isolate the [tex]\(x\)[/tex]-term.
Add 35 to both sides of the inequality to isolate the term involving [tex]\(x\)[/tex]:
[tex]\[ 5x - 35 + 35 < -10 + 35 \][/tex]
[tex]\[ 5x < 25 \][/tex]

Step 5: Solve for [tex]\(x\)[/tex].
Divide both sides by 5 to isolate [tex]\(x\)[/tex]:
[tex]\[ x < 5 \][/tex]

Therefore, the solution to the inequality [tex]\(7x - 35 < 2(x - 5)\)[/tex] is:
[tex]\[ x < 5 \][/tex]