Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the inequality [tex]\(7x - 35 < 2(x - 5)\)[/tex], we need to follow a step-by-step process:
Step 1: Distribute the term on the right side.
[tex]\[ 7x - 35 < 2(x - 5) \][/tex]
Distribute the 2 to both terms inside the parentheses:
[tex]\[ 7x - 35 < 2x - 10 \][/tex]
Step 2: Move all terms involving [tex]\(x\)[/tex] to one side of the inequality.
Subtract [tex]\(2x\)[/tex] from both sides to isolate [tex]\(x\)[/tex] on one side:
[tex]\[ 7x - 2x - 35 < -10 \][/tex]
Step 3: Simplify the terms.
Combine like terms:
[tex]\[ 5x - 35 < -10 \][/tex]
Step 4: Isolate the [tex]\(x\)[/tex]-term.
Add 35 to both sides of the inequality to isolate the term involving [tex]\(x\)[/tex]:
[tex]\[ 5x - 35 + 35 < -10 + 35 \][/tex]
[tex]\[ 5x < 25 \][/tex]
Step 5: Solve for [tex]\(x\)[/tex].
Divide both sides by 5 to isolate [tex]\(x\)[/tex]:
[tex]\[ x < 5 \][/tex]
Therefore, the solution to the inequality [tex]\(7x - 35 < 2(x - 5)\)[/tex] is:
[tex]\[ x < 5 \][/tex]
Step 1: Distribute the term on the right side.
[tex]\[ 7x - 35 < 2(x - 5) \][/tex]
Distribute the 2 to both terms inside the parentheses:
[tex]\[ 7x - 35 < 2x - 10 \][/tex]
Step 2: Move all terms involving [tex]\(x\)[/tex] to one side of the inequality.
Subtract [tex]\(2x\)[/tex] from both sides to isolate [tex]\(x\)[/tex] on one side:
[tex]\[ 7x - 2x - 35 < -10 \][/tex]
Step 3: Simplify the terms.
Combine like terms:
[tex]\[ 5x - 35 < -10 \][/tex]
Step 4: Isolate the [tex]\(x\)[/tex]-term.
Add 35 to both sides of the inequality to isolate the term involving [tex]\(x\)[/tex]:
[tex]\[ 5x - 35 + 35 < -10 + 35 \][/tex]
[tex]\[ 5x < 25 \][/tex]
Step 5: Solve for [tex]\(x\)[/tex].
Divide both sides by 5 to isolate [tex]\(x\)[/tex]:
[tex]\[ x < 5 \][/tex]
Therefore, the solution to the inequality [tex]\(7x - 35 < 2(x - 5)\)[/tex] is:
[tex]\[ x < 5 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.