At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's solve this problem step-by-step.
1. Understanding the Scenario:
- The weight of the body on the surface of the Earth is [tex]\( 63 \, \text{N} \)[/tex].
- The height above the Earth's surface where we want to find the new gravitational force is [tex]\( 3200 \, \text{km} \)[/tex].
- The radius of the Earth is given as [tex]\( 6400 \, \text{km} \)[/tex].
2. Determine the Distances:
- Distance from the center of the Earth to the surface is the radius of the Earth: [tex]\( r_{\text{surface}} = 6400 \, \text{km} \)[/tex].
- Distance from the center of the Earth to the point 3200 km above the surface:
[tex]\[ r_{\text{above}} = r_{\text{surface}} + \text{height above surface} = 6400 \, \text{km} + 3200 \, \text{km} = 9600 \, \text{km} \][/tex]
3. Using the Concept of Gravitational Force:
- The gravitational force varies inversely with the square of the distance from the center of the Earth. This relationship is given by:
[tex]\[ F_{\text{above}} = F_{\text{surface}} \left( \frac{r_{\text{surface}}}{r_{\text{above}}} \right)^2 \][/tex]
- Where:
[tex]\[ F_{\text{surface}} = 63 \, \text{N} \quad \text{(gravitational force at the surface)} \][/tex]
4. Plug in the Values:
[tex]\[ F_{\text{above}} = 63 \, \text{N} \left( \frac{6400 \, \text{km}}{9600 \, \text{km}} \right)^2 \][/tex]
5. Calculate the Fraction:
- Simplify the fraction [tex]\( \frac{6400}{9600} \)[/tex]:
[tex]\[ \frac{6400}{9600} = \frac{2}{3} \][/tex]
6. Square the Fraction:
[tex]\[ \left( \frac{2}{3} \right)^2 = \frac{4}{9} \][/tex]
7. Calculate the Gravitational Force at the Height:
[tex]\[ F_{\text{above}} = 63 \, \text{N} \times \frac{4}{9} = 63 \, \text{N} \times 0.4444 = 28 \, \text{N} \][/tex]
Therefore, the gravitational force on the body at a height of [tex]\( 3200 \, \text{km} \)[/tex] above the Earth's surface is [tex]\( 28 \, \text{N} \)[/tex].
1. Understanding the Scenario:
- The weight of the body on the surface of the Earth is [tex]\( 63 \, \text{N} \)[/tex].
- The height above the Earth's surface where we want to find the new gravitational force is [tex]\( 3200 \, \text{km} \)[/tex].
- The radius of the Earth is given as [tex]\( 6400 \, \text{km} \)[/tex].
2. Determine the Distances:
- Distance from the center of the Earth to the surface is the radius of the Earth: [tex]\( r_{\text{surface}} = 6400 \, \text{km} \)[/tex].
- Distance from the center of the Earth to the point 3200 km above the surface:
[tex]\[ r_{\text{above}} = r_{\text{surface}} + \text{height above surface} = 6400 \, \text{km} + 3200 \, \text{km} = 9600 \, \text{km} \][/tex]
3. Using the Concept of Gravitational Force:
- The gravitational force varies inversely with the square of the distance from the center of the Earth. This relationship is given by:
[tex]\[ F_{\text{above}} = F_{\text{surface}} \left( \frac{r_{\text{surface}}}{r_{\text{above}}} \right)^2 \][/tex]
- Where:
[tex]\[ F_{\text{surface}} = 63 \, \text{N} \quad \text{(gravitational force at the surface)} \][/tex]
4. Plug in the Values:
[tex]\[ F_{\text{above}} = 63 \, \text{N} \left( \frac{6400 \, \text{km}}{9600 \, \text{km}} \right)^2 \][/tex]
5. Calculate the Fraction:
- Simplify the fraction [tex]\( \frac{6400}{9600} \)[/tex]:
[tex]\[ \frac{6400}{9600} = \frac{2}{3} \][/tex]
6. Square the Fraction:
[tex]\[ \left( \frac{2}{3} \right)^2 = \frac{4}{9} \][/tex]
7. Calculate the Gravitational Force at the Height:
[tex]\[ F_{\text{above}} = 63 \, \text{N} \times \frac{4}{9} = 63 \, \text{N} \times 0.4444 = 28 \, \text{N} \][/tex]
Therefore, the gravitational force on the body at a height of [tex]\( 3200 \, \text{km} \)[/tex] above the Earth's surface is [tex]\( 28 \, \text{N} \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.