Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the surface area of a closed cylindrical storage tank, we need to calculate the area of both the cylindrical body and the two circular ends (top and bottom) of the tank.
Here are the step-by-step calculations:
1. Calculate the radius of the cylinder:
- Diameter of the cylinder = 2.8 meters
- Radius (r) = Diameter / 2
[tex]\[ r = \frac{2.8}{2} = 1.4 \text{ meters} \][/tex]
2. Calculate the surface area of the side (lateral surface area) of the cylinder:
- The formula for the lateral surface area of a cylinder is:
[tex]\[ \text{Lateral Surface Area} = 2 \pi r h \][/tex]
- Given: [tex]\( \pi = \frac{22}{7} \)[/tex], radius [tex]\( r = 1.4 \)[/tex] meters, and height [tex]\( h = 3 \)[/tex] meters.
[tex]\[ \text{Lateral Surface Area} = 2 \times \frac{22}{7} \times 1.4 \times 3 \][/tex]
3. Calculate the area of the two circular ends:
- The formula for the area of one circle (top or bottom) is:
[tex]\[ \text{Area of one circular end} = \pi r^2 \][/tex]
- To find the areas of both ends, we multiply by 2:
[tex]\[ \text{Total Area of two circular ends} = 2 \pi r^2 \][/tex]
- Given: [tex]\( \pi = \frac{22}{7} \)[/tex], radius [tex]\( r = 1.4 \)[/tex] meters.
[tex]\[ \text{Total Area of two circular ends} = 2 \times \frac{22}{7} \times (1.4)^2 \][/tex]
4. Sum the lateral surface area and the area of the two circular ends to get the total surface area:
[tex]\[ \text{Total Surface Area} = \text{Lateral Surface Area} + \text{Total Area of two circular ends} \][/tex]
Substituting the values, we find:
- Lateral Surface Area calculation:
[tex]\[ \text{Lateral Surface Area} = 2 \times \frac{22}{7} \times 1.4 \times 3 = 26.4 \text{ square meters} \][/tex]
- Total Area of two circular ends calculation:
[tex]\[ \text{Total Area of two circular ends} = 2 \times \frac{22}{7} \times (1.4)^2 = 12.32 \text{ square meters} \][/tex]
So, the Total Surface Area:
[tex]\[ \text{Total Surface Area} = 26.4 + 12.32 = 38.72 \text{ square meters} \][/tex]
Therefore, the surface area of the metallic sheets used to make the tank is [tex]\( 38.72 \)[/tex] square metres.
Here are the step-by-step calculations:
1. Calculate the radius of the cylinder:
- Diameter of the cylinder = 2.8 meters
- Radius (r) = Diameter / 2
[tex]\[ r = \frac{2.8}{2} = 1.4 \text{ meters} \][/tex]
2. Calculate the surface area of the side (lateral surface area) of the cylinder:
- The formula for the lateral surface area of a cylinder is:
[tex]\[ \text{Lateral Surface Area} = 2 \pi r h \][/tex]
- Given: [tex]\( \pi = \frac{22}{7} \)[/tex], radius [tex]\( r = 1.4 \)[/tex] meters, and height [tex]\( h = 3 \)[/tex] meters.
[tex]\[ \text{Lateral Surface Area} = 2 \times \frac{22}{7} \times 1.4 \times 3 \][/tex]
3. Calculate the area of the two circular ends:
- The formula for the area of one circle (top or bottom) is:
[tex]\[ \text{Area of one circular end} = \pi r^2 \][/tex]
- To find the areas of both ends, we multiply by 2:
[tex]\[ \text{Total Area of two circular ends} = 2 \pi r^2 \][/tex]
- Given: [tex]\( \pi = \frac{22}{7} \)[/tex], radius [tex]\( r = 1.4 \)[/tex] meters.
[tex]\[ \text{Total Area of two circular ends} = 2 \times \frac{22}{7} \times (1.4)^2 \][/tex]
4. Sum the lateral surface area and the area of the two circular ends to get the total surface area:
[tex]\[ \text{Total Surface Area} = \text{Lateral Surface Area} + \text{Total Area of two circular ends} \][/tex]
Substituting the values, we find:
- Lateral Surface Area calculation:
[tex]\[ \text{Lateral Surface Area} = 2 \times \frac{22}{7} \times 1.4 \times 3 = 26.4 \text{ square meters} \][/tex]
- Total Area of two circular ends calculation:
[tex]\[ \text{Total Area of two circular ends} = 2 \times \frac{22}{7} \times (1.4)^2 = 12.32 \text{ square meters} \][/tex]
So, the Total Surface Area:
[tex]\[ \text{Total Surface Area} = 26.4 + 12.32 = 38.72 \text{ square meters} \][/tex]
Therefore, the surface area of the metallic sheets used to make the tank is [tex]\( 38.72 \)[/tex] square metres.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.