Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that satisfy the equation
[tex]\[ x^2 - 4x + 9 = (x + a)^2 + b \][/tex]
we will follow a step-by-step approach to equate coefficients from both sides of the equation.
### Step 1: Expand the Right-hand Side
First, expand [tex]\((x + a)^2 + b\)[/tex]:
[tex]\[ (x + a)^2 + b = (x^2 + 2ax + a^2) + b \][/tex]
So the right-hand side becomes:
[tex]\[ x^2 + 2ax + a^2 + b \][/tex]
### Step 2: Equate the Given Equation with the Expanded Right-hand Side
Rewrite the given equation by equating it with our expanded expression:
[tex]\[ x^2 - 4x + 9 = x^2 + 2ax + a^2 + b \][/tex]
### Step 3: Compare Coefficients of Corresponding Powers of [tex]\(x\)[/tex]
Let's compare the coefficients of like terms from both sides of the equation.
1. Coefficient of [tex]\(x^2\)[/tex]:
[tex]\[ 1 = 1 \][/tex]
2. Coefficient of [tex]\(x\)[/tex]:
[tex]\[ -4 = 2a \][/tex]
Solving for [tex]\(a\)[/tex]:
[tex]\[ 2a = -4 \implies a = -2 \][/tex]
3. Constant term:
[tex]\[ 9 = a^2 + b \][/tex]
Substitute [tex]\(a = -2\)[/tex] into this equation:
[tex]\[ 9 = (-2)^2 + b \][/tex]
Simplify and solve for [tex]\(b\)[/tex]:
[tex]\[ 9 = 4 + b \implies b = 9 - 4 \implies b = 5 \][/tex]
### Step 4: State the Solution
The values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that satisfy the equation are:
[tex]\[ a = -2 \quad \text{and} \quad b = 5 \][/tex]
[tex]\[ x^2 - 4x + 9 = (x + a)^2 + b \][/tex]
we will follow a step-by-step approach to equate coefficients from both sides of the equation.
### Step 1: Expand the Right-hand Side
First, expand [tex]\((x + a)^2 + b\)[/tex]:
[tex]\[ (x + a)^2 + b = (x^2 + 2ax + a^2) + b \][/tex]
So the right-hand side becomes:
[tex]\[ x^2 + 2ax + a^2 + b \][/tex]
### Step 2: Equate the Given Equation with the Expanded Right-hand Side
Rewrite the given equation by equating it with our expanded expression:
[tex]\[ x^2 - 4x + 9 = x^2 + 2ax + a^2 + b \][/tex]
### Step 3: Compare Coefficients of Corresponding Powers of [tex]\(x\)[/tex]
Let's compare the coefficients of like terms from both sides of the equation.
1. Coefficient of [tex]\(x^2\)[/tex]:
[tex]\[ 1 = 1 \][/tex]
2. Coefficient of [tex]\(x\)[/tex]:
[tex]\[ -4 = 2a \][/tex]
Solving for [tex]\(a\)[/tex]:
[tex]\[ 2a = -4 \implies a = -2 \][/tex]
3. Constant term:
[tex]\[ 9 = a^2 + b \][/tex]
Substitute [tex]\(a = -2\)[/tex] into this equation:
[tex]\[ 9 = (-2)^2 + b \][/tex]
Simplify and solve for [tex]\(b\)[/tex]:
[tex]\[ 9 = 4 + b \implies b = 9 - 4 \implies b = 5 \][/tex]
### Step 4: State the Solution
The values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] that satisfy the equation are:
[tex]\[ a = -2 \quad \text{and} \quad b = 5 \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.