Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which fractions among [tex]\(\frac{7}{21}\)[/tex], [tex]\(\frac{3}{12}\)[/tex], [tex]\(\frac{2}{6}\)[/tex], and [tex]\(\frac{3}{3}\)[/tex] are equivalent to [tex]\(\frac{1}{3}\)[/tex], we need to compare each given fraction against [tex]\(\frac{1}{3}\)[/tex]. Fractions are equivalent if they have the same value when reduced to their simplest form.
1. Examine [tex]\(\frac{7}{21}\)[/tex]
- Simplify [tex]\(\frac{7}{21}\)[/tex]:
[tex]\[ \frac{7}{21} = \frac{7 \div 7}{21 \div 7} = \frac{1}{3} \][/tex]
- Since the simplified form is [tex]\(\frac{1}{3}\)[/tex], [tex]\(\frac{7}{21}\)[/tex] is equivalent to [tex]\(\frac{1}{3}\)[/tex].
2. Examine [tex]\(\frac{3}{12}\)[/tex]
- Simplify [tex]\(\frac{3}{12}\)[/tex]:
[tex]\[ \frac{3}{12} = \frac{3 \div 3}{12 \div 3} = \frac{1}{4} \][/tex]
- The simplified form is [tex]\(\frac{1}{4}\)[/tex], which is not equal to [tex]\(\frac{1}{3}\)[/tex]. Therefore, [tex]\(\frac{3}{12}\)[/tex] is not equivalent to [tex]\(\frac{1}{3}\)[/tex].
3. Examine [tex]\(\frac{2}{6}\)[/tex]
- Simplify [tex]\(\frac{2}{6}\)[/tex]:
[tex]\[ \frac{2}{6} = \frac{2 \div 2}{6 \div 2} = \frac{1}{3} \][/tex]
- Since the simplified form is [tex]\(\frac{1}{3}\)[/tex], [tex]\(\frac{2}{6}\)[/tex] is equivalent to [tex]\(\frac{1}{3}\)[/tex].
4. Examine [tex]\(\frac{3}{3}\)[/tex]
- Simplify [tex]\(\frac{3}{3}\)[/tex]:
[tex]\[ \frac{3}{3} = \frac{3 \div 3}{3 \div 3} = \frac{1}{1} = 1 \][/tex]
- The simplified form is [tex]\(1\)[/tex], which is not equal to [tex]\(\frac{1}{3}\)[/tex]. Therefore, [tex]\(\frac{3}{3}\)[/tex] is not equivalent to [tex]\(\frac{1}{3}\)[/tex].
After examining all the given fractions, we find that the fractions which are equivalent to [tex]\(\frac{1}{3}\)[/tex] are:
[tex]\[ \boxed{\frac{7}{21} \text{ and } \frac{2}{6}} \][/tex]
1. Examine [tex]\(\frac{7}{21}\)[/tex]
- Simplify [tex]\(\frac{7}{21}\)[/tex]:
[tex]\[ \frac{7}{21} = \frac{7 \div 7}{21 \div 7} = \frac{1}{3} \][/tex]
- Since the simplified form is [tex]\(\frac{1}{3}\)[/tex], [tex]\(\frac{7}{21}\)[/tex] is equivalent to [tex]\(\frac{1}{3}\)[/tex].
2. Examine [tex]\(\frac{3}{12}\)[/tex]
- Simplify [tex]\(\frac{3}{12}\)[/tex]:
[tex]\[ \frac{3}{12} = \frac{3 \div 3}{12 \div 3} = \frac{1}{4} \][/tex]
- The simplified form is [tex]\(\frac{1}{4}\)[/tex], which is not equal to [tex]\(\frac{1}{3}\)[/tex]. Therefore, [tex]\(\frac{3}{12}\)[/tex] is not equivalent to [tex]\(\frac{1}{3}\)[/tex].
3. Examine [tex]\(\frac{2}{6}\)[/tex]
- Simplify [tex]\(\frac{2}{6}\)[/tex]:
[tex]\[ \frac{2}{6} = \frac{2 \div 2}{6 \div 2} = \frac{1}{3} \][/tex]
- Since the simplified form is [tex]\(\frac{1}{3}\)[/tex], [tex]\(\frac{2}{6}\)[/tex] is equivalent to [tex]\(\frac{1}{3}\)[/tex].
4. Examine [tex]\(\frac{3}{3}\)[/tex]
- Simplify [tex]\(\frac{3}{3}\)[/tex]:
[tex]\[ \frac{3}{3} = \frac{3 \div 3}{3 \div 3} = \frac{1}{1} = 1 \][/tex]
- The simplified form is [tex]\(1\)[/tex], which is not equal to [tex]\(\frac{1}{3}\)[/tex]. Therefore, [tex]\(\frac{3}{3}\)[/tex] is not equivalent to [tex]\(\frac{1}{3}\)[/tex].
After examining all the given fractions, we find that the fractions which are equivalent to [tex]\(\frac{1}{3}\)[/tex] are:
[tex]\[ \boxed{\frac{7}{21} \text{ and } \frac{2}{6}} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.