Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which fractions are equivalent to [tex]\(\frac{21}{28}\)[/tex], we need to simplify [tex]\(\frac{21}{28}\)[/tex] and then compare this simplified form to the other fractions.
### Step 1: Simplify [tex]\(\frac{21}{28}\)[/tex]
1. Find the greatest common divisor (GCD) of 21 and 28.
- The factors of 21 are 1, 3, 7, 21.
- The factors of 28 are 1, 2, 4, 7, 14, 28.
- The greatest common factor is 7.
2. Divide both the numerator and the denominator of [tex]\(\frac{21}{28}\)[/tex] by 7:
[tex]\[ \frac{21 \div 7}{28 \div 7} = \frac{3}{4} \][/tex]
So, [tex]\(\frac{21}{28}\)[/tex] simplifies to [tex]\(\frac{3}{4}\)[/tex].
### Step 2: Simplify and compare each of the given fractions
1. [tex]\(\frac{42}{56}\)[/tex]
- GCD of 42 and 56 is 14.
- Simplify: [tex]\(\frac{42 \div 14}{56 \div 14} = \frac{3}{4}\)[/tex]
- Equivalent to [tex]\(\frac{21}{28}\)[/tex]?
2. [tex]\(\frac{3}{4}\)[/tex]
- Already in simplest form.
- Equivalent to [tex]\(\frac{21}{28}\)[/tex]?
3. [tex]\(\frac{3}{9}\)[/tex]
- GCD of 3 and 9 is 3.
- Simplify: [tex]\(\frac{3 \div 3}{9 \div 3} = \frac{1}{3}\)[/tex]
- Not equivalent to [tex]\(\frac{21}{28}\)[/tex]?
4. [tex]\(\frac{3}{7}\)[/tex]
- Already in simplest form.
- Not equivalent to [tex]\(\frac{21}{28}\)[/tex]?
### Step 3: Conclusion
Comparing all the simplified forms, we find that [tex]\(\frac{42}{56}\)[/tex] and [tex]\(\frac{3}{4}\)[/tex] both simplify to [tex]\(\frac{3}{4}\)[/tex], which is equivalent to [tex]\(\frac{21}{28}\)[/tex]. Therefore, the two fractions equivalent to [tex]\(\frac{21}{28}\)[/tex] are:
[tex]\[ \boxed{\frac{42}{56} \quad \text{and} \quad \frac{3}{4}} \][/tex]
### Step 1: Simplify [tex]\(\frac{21}{28}\)[/tex]
1. Find the greatest common divisor (GCD) of 21 and 28.
- The factors of 21 are 1, 3, 7, 21.
- The factors of 28 are 1, 2, 4, 7, 14, 28.
- The greatest common factor is 7.
2. Divide both the numerator and the denominator of [tex]\(\frac{21}{28}\)[/tex] by 7:
[tex]\[ \frac{21 \div 7}{28 \div 7} = \frac{3}{4} \][/tex]
So, [tex]\(\frac{21}{28}\)[/tex] simplifies to [tex]\(\frac{3}{4}\)[/tex].
### Step 2: Simplify and compare each of the given fractions
1. [tex]\(\frac{42}{56}\)[/tex]
- GCD of 42 and 56 is 14.
- Simplify: [tex]\(\frac{42 \div 14}{56 \div 14} = \frac{3}{4}\)[/tex]
- Equivalent to [tex]\(\frac{21}{28}\)[/tex]?
2. [tex]\(\frac{3}{4}\)[/tex]
- Already in simplest form.
- Equivalent to [tex]\(\frac{21}{28}\)[/tex]?
3. [tex]\(\frac{3}{9}\)[/tex]
- GCD of 3 and 9 is 3.
- Simplify: [tex]\(\frac{3 \div 3}{9 \div 3} = \frac{1}{3}\)[/tex]
- Not equivalent to [tex]\(\frac{21}{28}\)[/tex]?
4. [tex]\(\frac{3}{7}\)[/tex]
- Already in simplest form.
- Not equivalent to [tex]\(\frac{21}{28}\)[/tex]?
### Step 3: Conclusion
Comparing all the simplified forms, we find that [tex]\(\frac{42}{56}\)[/tex] and [tex]\(\frac{3}{4}\)[/tex] both simplify to [tex]\(\frac{3}{4}\)[/tex], which is equivalent to [tex]\(\frac{21}{28}\)[/tex]. Therefore, the two fractions equivalent to [tex]\(\frac{21}{28}\)[/tex] are:
[tex]\[ \boxed{\frac{42}{56} \quad \text{and} \quad \frac{3}{4}} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.