At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which option represents the formula for the given arithmetic sequence [tex]\(25, 31, 37, 43, 49, \ldots\)[/tex], we need to derive the general formula for the nth term of an arithmetic sequence.
An arithmetic sequence is defined by a first term ([tex]\(a\)[/tex]) and a common difference ([tex]\(d\)[/tex]). The nth term of an arithmetic sequence can be given by the formula:
[tex]\[ a_n = a + (n-1) \cdot d \][/tex]
where:
- [tex]\(a\)[/tex] is the first term of the sequence,
- [tex]\(d\)[/tex] is the common difference,
- [tex]\(n\)[/tex] is the term number.
Let's apply this to the given sequence:
1. Identify the first term ([tex]\(a\)[/tex]):
The first term of the sequence is [tex]\(25\)[/tex].
2. Determine the common difference ([tex]\(d\)[/tex]):
The common difference is the difference between any two consecutive terms. Let's calculate it using the first two terms:
[tex]\[ d = 31 - 25 = 6 \][/tex]
Now, we have:
- [tex]\(a = 25\)[/tex]
- [tex]\(d = 6\)[/tex]
Using the nth term formula for an arithmetic sequence:
[tex]\[ a_n = a + (n-1) \cdot d \][/tex]
Substitute [tex]\(a\)[/tex] and [tex]\(d\)[/tex] into the formula:
[tex]\[ a_n = 25 + (n-1) \cdot 6 \][/tex]
Simplify the expression:
[tex]\[ a_n = 25 + 6(n-1) \][/tex]
So the formula simplifies to:
[tex]\[ a_n = 25 + 6n - 6 \][/tex]
[tex]\[ a_n = 6n + 19 \][/tex]
Now, let's compare this with the given options to find the correct formula:
1. [tex]\(f(n) = 25 + 6(n)\)[/tex]
2. [tex]\(f(n) = 25 + 6(n+1)\)[/tex]
3. [tex]\(f(n) = 25 + 6(n-1)\)[/tex]
4. [tex]\(f(n) = 19 + 6(n+1)\)[/tex]
To match our derived formula:
[tex]\[ 6n + 19 \][/tex]
Let's analyze each option:
- Option 1: [tex]\(f(n) = 25 + 6(n)\)[/tex]:
This simplifies to [tex]\(25 + 6n\)[/tex], which does not match [tex]\(6n + 19\)[/tex].
- Option 2: [tex]\(f(n) = 25 + 6(n+1)\)[/tex]:
This simplifies to [tex]\(25 + 6n + 6\)[/tex], which simplifies further to [tex]\(6n + 31\)[/tex], which does not match [tex]\(6n + 19\)[/tex].
- Option 3: [tex]\(f(n) = 25 + 6(n-1)\)[/tex]:
This simplifies to [tex]\(25 + 6n - 6\)[/tex], which simplifies further to [tex]\(6n + 19\)[/tex], which matches our derived formula.
- Option 4: [tex]\(f(n) = 19 + 6(n+1)\)[/tex]:
This simplifies to [tex]\(19 + 6n + 6\)[/tex], which simplifies further to [tex]\(6n + 25\)[/tex], which does not match [tex]\(6n + 19\)[/tex].
Thus, the correct answer is the option which matches our derived formula:
[tex]\[ f(n) = 25 + 6(n-1) \][/tex]
So the correct answer is:
[tex]\[ \boxed{f(n) = 25 + 6(n-1)} \][/tex]
Therefore, the correct option is:
Option 3: [tex]\(f(n) = 25 + 6(n-1)\)[/tex]
An arithmetic sequence is defined by a first term ([tex]\(a\)[/tex]) and a common difference ([tex]\(d\)[/tex]). The nth term of an arithmetic sequence can be given by the formula:
[tex]\[ a_n = a + (n-1) \cdot d \][/tex]
where:
- [tex]\(a\)[/tex] is the first term of the sequence,
- [tex]\(d\)[/tex] is the common difference,
- [tex]\(n\)[/tex] is the term number.
Let's apply this to the given sequence:
1. Identify the first term ([tex]\(a\)[/tex]):
The first term of the sequence is [tex]\(25\)[/tex].
2. Determine the common difference ([tex]\(d\)[/tex]):
The common difference is the difference between any two consecutive terms. Let's calculate it using the first two terms:
[tex]\[ d = 31 - 25 = 6 \][/tex]
Now, we have:
- [tex]\(a = 25\)[/tex]
- [tex]\(d = 6\)[/tex]
Using the nth term formula for an arithmetic sequence:
[tex]\[ a_n = a + (n-1) \cdot d \][/tex]
Substitute [tex]\(a\)[/tex] and [tex]\(d\)[/tex] into the formula:
[tex]\[ a_n = 25 + (n-1) \cdot 6 \][/tex]
Simplify the expression:
[tex]\[ a_n = 25 + 6(n-1) \][/tex]
So the formula simplifies to:
[tex]\[ a_n = 25 + 6n - 6 \][/tex]
[tex]\[ a_n = 6n + 19 \][/tex]
Now, let's compare this with the given options to find the correct formula:
1. [tex]\(f(n) = 25 + 6(n)\)[/tex]
2. [tex]\(f(n) = 25 + 6(n+1)\)[/tex]
3. [tex]\(f(n) = 25 + 6(n-1)\)[/tex]
4. [tex]\(f(n) = 19 + 6(n+1)\)[/tex]
To match our derived formula:
[tex]\[ 6n + 19 \][/tex]
Let's analyze each option:
- Option 1: [tex]\(f(n) = 25 + 6(n)\)[/tex]:
This simplifies to [tex]\(25 + 6n\)[/tex], which does not match [tex]\(6n + 19\)[/tex].
- Option 2: [tex]\(f(n) = 25 + 6(n+1)\)[/tex]:
This simplifies to [tex]\(25 + 6n + 6\)[/tex], which simplifies further to [tex]\(6n + 31\)[/tex], which does not match [tex]\(6n + 19\)[/tex].
- Option 3: [tex]\(f(n) = 25 + 6(n-1)\)[/tex]:
This simplifies to [tex]\(25 + 6n - 6\)[/tex], which simplifies further to [tex]\(6n + 19\)[/tex], which matches our derived formula.
- Option 4: [tex]\(f(n) = 19 + 6(n+1)\)[/tex]:
This simplifies to [tex]\(19 + 6n + 6\)[/tex], which simplifies further to [tex]\(6n + 25\)[/tex], which does not match [tex]\(6n + 19\)[/tex].
Thus, the correct answer is the option which matches our derived formula:
[tex]\[ f(n) = 25 + 6(n-1) \][/tex]
So the correct answer is:
[tex]\[ \boxed{f(n) = 25 + 6(n-1)} \][/tex]
Therefore, the correct option is:
Option 3: [tex]\(f(n) = 25 + 6(n-1)\)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.