Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the cost of 1 kg of carrots and the cost of 1 kg of tomatoes given the conditions, let's follow these steps.
1. Define the variables:
- Let the cost of 1 kg of carrots be [tex]\( C \)[/tex].
- Let the cost of 1 kg of tomatoes be [tex]\( T \)[/tex].
2. Set up the given ratio:
- According to the problem, the ratio of the cost of 1 kg of carrots to the cost of 1 kg of tomatoes is [tex]\( 5:9 \)[/tex].
- This can be written as [tex]\( \frac{C}{T} = \frac{5}{9} \)[/tex], which implies [tex]\( C = \frac{5}{9} T \)[/tex].
3. Set up the total cost equation:
- The total cost for 7 kg of carrots and 5 kg of tomatoes is given as 480 p.
- Therefore, we can write the equation:
[tex]\[ 7C + 5T = 480 \][/tex]
4. Substitute the ratio relation into the total cost equation:
- Substitute [tex]\( C = \frac{5}{9} T \)[/tex] into the total cost equation:
[tex]\[ 7 \left( \frac{5}{9} T \right) + 5T = 480 \][/tex]
5. Solve for [tex]\( T \)[/tex]:
- Simplify the equation:
[tex]\[ \frac{35}{9} T + 5T = 480 \][/tex]
- To combine the terms, first convert 5T to a fraction with a common denominator:
[tex]\[ \frac{35}{9}T + \frac{45}{9}T = 480 \][/tex]
[tex]\[ \frac{80}{9}T = 480 \][/tex]
- Multiply both sides by [tex]\( \frac{9}{80} \)[/tex] to solve for [tex]\( T \)[/tex]:
[tex]\[ T = 480 \times \frac{9}{80} \][/tex]
[tex]\[ T = 54 \][/tex]
6. Find the value of [tex]\( C \)[/tex]:
- Now that we have [tex]\( T \)[/tex], use the ratio relation to find [tex]\( C \)[/tex]:
[tex]\[ C = \frac{5}{9}T \][/tex]
[tex]\[ C = \frac{5}{9} \times 54 \][/tex]
[tex]\[ C = 30 \][/tex]
Therefore, the cost of 1 kg of carrots is 30 p, and the cost of 1 kg of tomatoes is 54 p.
1. Define the variables:
- Let the cost of 1 kg of carrots be [tex]\( C \)[/tex].
- Let the cost of 1 kg of tomatoes be [tex]\( T \)[/tex].
2. Set up the given ratio:
- According to the problem, the ratio of the cost of 1 kg of carrots to the cost of 1 kg of tomatoes is [tex]\( 5:9 \)[/tex].
- This can be written as [tex]\( \frac{C}{T} = \frac{5}{9} \)[/tex], which implies [tex]\( C = \frac{5}{9} T \)[/tex].
3. Set up the total cost equation:
- The total cost for 7 kg of carrots and 5 kg of tomatoes is given as 480 p.
- Therefore, we can write the equation:
[tex]\[ 7C + 5T = 480 \][/tex]
4. Substitute the ratio relation into the total cost equation:
- Substitute [tex]\( C = \frac{5}{9} T \)[/tex] into the total cost equation:
[tex]\[ 7 \left( \frac{5}{9} T \right) + 5T = 480 \][/tex]
5. Solve for [tex]\( T \)[/tex]:
- Simplify the equation:
[tex]\[ \frac{35}{9} T + 5T = 480 \][/tex]
- To combine the terms, first convert 5T to a fraction with a common denominator:
[tex]\[ \frac{35}{9}T + \frac{45}{9}T = 480 \][/tex]
[tex]\[ \frac{80}{9}T = 480 \][/tex]
- Multiply both sides by [tex]\( \frac{9}{80} \)[/tex] to solve for [tex]\( T \)[/tex]:
[tex]\[ T = 480 \times \frac{9}{80} \][/tex]
[tex]\[ T = 54 \][/tex]
6. Find the value of [tex]\( C \)[/tex]:
- Now that we have [tex]\( T \)[/tex], use the ratio relation to find [tex]\( C \)[/tex]:
[tex]\[ C = \frac{5}{9}T \][/tex]
[tex]\[ C = \frac{5}{9} \times 54 \][/tex]
[tex]\[ C = 30 \][/tex]
Therefore, the cost of 1 kg of carrots is 30 p, and the cost of 1 kg of tomatoes is 54 p.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.