At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure, I'd be happy to walk you through the detailed solution for each part of the given question.
### Part (a): Amplitude
The amplitude of a trigonometric function [tex]\( y = a \sin(bx + c) + d \)[/tex] or [tex]\( y = a \cos(bx + c) + d \)[/tex] is given by the absolute value of the coefficient [tex]\( a \)[/tex].
1. For the function [tex]\( y = 4 \sin \left[ \frac{1}{3} (x + 30°) \right] - 1 \)[/tex]:
- The coefficient of [tex]\(\sin\)[/tex] is [tex]\(4\)[/tex].
- Therefore, the amplitude is [tex]\(4\)[/tex].
2. For the function [tex]\( y = -\frac{1}{2} \cos \left[ 4 (x + 135°) \right] + 2 \)[/tex]:
- The coefficient of [tex]\(\cos\)[/tex] is [tex]\(-\frac{1}{2}\)[/tex].
- Therefore, the amplitude is the absolute value of [tex]\(-\frac{1}{2}\)[/tex], which is [tex]\(\frac{1}{2}\)[/tex].
### Part (b): Period
The period of a sine or cosine function [tex]\( y = a \sin(bx + c) + d \)[/tex] or [tex]\( y = a \cos(bx + c) + d \)[/tex] is given by the formula [tex]\( \frac{2π}{|b|} \)[/tex].
1. For the function [tex]\( y = 4 \sin \left[ \frac{1}{3} (x + 30°) \right] - 1 \)[/tex]:
- The coefficient inside the sine function (b) is [tex]\(\frac{1}{3}\)[/tex].
- The period is [tex]\( \frac{2π}{|\frac{1}{3}|} \)[/tex].
- Simplifying this, we get [tex]\( 2π \times 3 = 6π \)[/tex].
2. For the function [tex]\( y = -\frac{1}{2} \cos \left[ 4 (x + 135°) \right] + 2 \)[/tex]:
- The coefficient inside the cosine function (b) is [tex]\(4\)[/tex].
- The period is [tex]\( \frac{2π}{|4|} \)[/tex].
- Simplifying this, we get [tex]\( \frac{2π}{4} = \frac{π}{2} \)[/tex].
### Part (c): Phase Shift
The phase shift of a trigonometric function [tex]\( y = a \sin(bx + c) + d \)[/tex] or [tex]\( y = a \cos(bx + c) + d \)[/tex] is given by solving [tex]\( bx + c = 0 \)[/tex] for [tex]\( x \)[/tex].
1. For the function [tex]\( y = 4 \sin \left[ \frac{1}{3} (x + 30°) \right] - 1 \)[/tex]:
- Set the inside of the sine function to zero: [tex]\( \frac{1}{3} (x + 30°) = 0 \)[/tex].
- Solve for [tex]\( x \)[/tex]: [tex]\( x + 30° = 0 \)[/tex] [tex]\(\Rightarrow x = -30°\)[/tex].
- Therefore, the phase shift is [tex]\(-30°\)[/tex].
2. For the function [tex]\( y = -\frac{1}{2} \cos \left[ 4 (x + 135°) \right] + 2 \)[/tex]:
- Set the inside of the cosine function to zero: [tex]\( 4 (x + 135°) = 0 \)[/tex].
- Solve for [tex]\( x \)[/tex]: [tex]\( x + 135° = 0 \)[/tex] [tex]\(\Rightarrow x = -135°\)[/tex].
- Therefore, the phase shift is [tex]\(-135°\)[/tex].
### Part (d): Vertical Shift
The vertical shift of a trigonometric function [tex]\( y = a \sin(bx + c) + d \)[/tex] or [tex]\( y = a \cos(bx + c) + d \)[/tex] is given by the constant [tex]\( d \)[/tex] at the end of the expression.
1. For the function [tex]\( y = 4 \sin \left[ \frac{1}{3} (x + 30°) \right] - 1 \)[/tex]:
- The vertical shift is [tex]\(-1\)[/tex].
2. For the function [tex]\( y = -\frac{1}{2} \cos \left[ 4 (x + 135°) \right] + 2 \)[/tex]:
- The vertical shift is [tex]\(2\)[/tex].
### Summary of Results
a) Amplitude:
- Function (i): [tex]\(4\)[/tex]
- Function (ii): [tex]\(\frac{1}{2}\)[/tex]
b) Period:
- Function (i): [tex]\(6π\)[/tex] (approximately [tex]\(18.85\)[/tex])
- Function (ii): [tex]\(\frac{π}{2}\)[/tex] (approximately [tex]\(1.57\)[/tex])
c) Phase Shift:
- Function (i): [tex]\(-30°\)[/tex]
- Function (ii): [tex]\(-135°\)[/tex]
d) Vertical Shift:
- Function (i): [tex]\(-1\)[/tex]
- Function (ii): [tex]\(2\)[/tex]
### Part (a): Amplitude
The amplitude of a trigonometric function [tex]\( y = a \sin(bx + c) + d \)[/tex] or [tex]\( y = a \cos(bx + c) + d \)[/tex] is given by the absolute value of the coefficient [tex]\( a \)[/tex].
1. For the function [tex]\( y = 4 \sin \left[ \frac{1}{3} (x + 30°) \right] - 1 \)[/tex]:
- The coefficient of [tex]\(\sin\)[/tex] is [tex]\(4\)[/tex].
- Therefore, the amplitude is [tex]\(4\)[/tex].
2. For the function [tex]\( y = -\frac{1}{2} \cos \left[ 4 (x + 135°) \right] + 2 \)[/tex]:
- The coefficient of [tex]\(\cos\)[/tex] is [tex]\(-\frac{1}{2}\)[/tex].
- Therefore, the amplitude is the absolute value of [tex]\(-\frac{1}{2}\)[/tex], which is [tex]\(\frac{1}{2}\)[/tex].
### Part (b): Period
The period of a sine or cosine function [tex]\( y = a \sin(bx + c) + d \)[/tex] or [tex]\( y = a \cos(bx + c) + d \)[/tex] is given by the formula [tex]\( \frac{2π}{|b|} \)[/tex].
1. For the function [tex]\( y = 4 \sin \left[ \frac{1}{3} (x + 30°) \right] - 1 \)[/tex]:
- The coefficient inside the sine function (b) is [tex]\(\frac{1}{3}\)[/tex].
- The period is [tex]\( \frac{2π}{|\frac{1}{3}|} \)[/tex].
- Simplifying this, we get [tex]\( 2π \times 3 = 6π \)[/tex].
2. For the function [tex]\( y = -\frac{1}{2} \cos \left[ 4 (x + 135°) \right] + 2 \)[/tex]:
- The coefficient inside the cosine function (b) is [tex]\(4\)[/tex].
- The period is [tex]\( \frac{2π}{|4|} \)[/tex].
- Simplifying this, we get [tex]\( \frac{2π}{4} = \frac{π}{2} \)[/tex].
### Part (c): Phase Shift
The phase shift of a trigonometric function [tex]\( y = a \sin(bx + c) + d \)[/tex] or [tex]\( y = a \cos(bx + c) + d \)[/tex] is given by solving [tex]\( bx + c = 0 \)[/tex] for [tex]\( x \)[/tex].
1. For the function [tex]\( y = 4 \sin \left[ \frac{1}{3} (x + 30°) \right] - 1 \)[/tex]:
- Set the inside of the sine function to zero: [tex]\( \frac{1}{3} (x + 30°) = 0 \)[/tex].
- Solve for [tex]\( x \)[/tex]: [tex]\( x + 30° = 0 \)[/tex] [tex]\(\Rightarrow x = -30°\)[/tex].
- Therefore, the phase shift is [tex]\(-30°\)[/tex].
2. For the function [tex]\( y = -\frac{1}{2} \cos \left[ 4 (x + 135°) \right] + 2 \)[/tex]:
- Set the inside of the cosine function to zero: [tex]\( 4 (x + 135°) = 0 \)[/tex].
- Solve for [tex]\( x \)[/tex]: [tex]\( x + 135° = 0 \)[/tex] [tex]\(\Rightarrow x = -135°\)[/tex].
- Therefore, the phase shift is [tex]\(-135°\)[/tex].
### Part (d): Vertical Shift
The vertical shift of a trigonometric function [tex]\( y = a \sin(bx + c) + d \)[/tex] or [tex]\( y = a \cos(bx + c) + d \)[/tex] is given by the constant [tex]\( d \)[/tex] at the end of the expression.
1. For the function [tex]\( y = 4 \sin \left[ \frac{1}{3} (x + 30°) \right] - 1 \)[/tex]:
- The vertical shift is [tex]\(-1\)[/tex].
2. For the function [tex]\( y = -\frac{1}{2} \cos \left[ 4 (x + 135°) \right] + 2 \)[/tex]:
- The vertical shift is [tex]\(2\)[/tex].
### Summary of Results
a) Amplitude:
- Function (i): [tex]\(4\)[/tex]
- Function (ii): [tex]\(\frac{1}{2}\)[/tex]
b) Period:
- Function (i): [tex]\(6π\)[/tex] (approximately [tex]\(18.85\)[/tex])
- Function (ii): [tex]\(\frac{π}{2}\)[/tex] (approximately [tex]\(1.57\)[/tex])
c) Phase Shift:
- Function (i): [tex]\(-30°\)[/tex]
- Function (ii): [tex]\(-135°\)[/tex]
d) Vertical Shift:
- Function (i): [tex]\(-1\)[/tex]
- Function (ii): [tex]\(2\)[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.