Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, I'd be happy to walk you through the detailed solution for each part of the given question.
### Part (a): Amplitude
The amplitude of a trigonometric function [tex]\( y = a \sin(bx + c) + d \)[/tex] or [tex]\( y = a \cos(bx + c) + d \)[/tex] is given by the absolute value of the coefficient [tex]\( a \)[/tex].
1. For the function [tex]\( y = 4 \sin \left[ \frac{1}{3} (x + 30°) \right] - 1 \)[/tex]:
- The coefficient of [tex]\(\sin\)[/tex] is [tex]\(4\)[/tex].
- Therefore, the amplitude is [tex]\(4\)[/tex].
2. For the function [tex]\( y = -\frac{1}{2} \cos \left[ 4 (x + 135°) \right] + 2 \)[/tex]:
- The coefficient of [tex]\(\cos\)[/tex] is [tex]\(-\frac{1}{2}\)[/tex].
- Therefore, the amplitude is the absolute value of [tex]\(-\frac{1}{2}\)[/tex], which is [tex]\(\frac{1}{2}\)[/tex].
### Part (b): Period
The period of a sine or cosine function [tex]\( y = a \sin(bx + c) + d \)[/tex] or [tex]\( y = a \cos(bx + c) + d \)[/tex] is given by the formula [tex]\( \frac{2π}{|b|} \)[/tex].
1. For the function [tex]\( y = 4 \sin \left[ \frac{1}{3} (x + 30°) \right] - 1 \)[/tex]:
- The coefficient inside the sine function (b) is [tex]\(\frac{1}{3}\)[/tex].
- The period is [tex]\( \frac{2π}{|\frac{1}{3}|} \)[/tex].
- Simplifying this, we get [tex]\( 2π \times 3 = 6π \)[/tex].
2. For the function [tex]\( y = -\frac{1}{2} \cos \left[ 4 (x + 135°) \right] + 2 \)[/tex]:
- The coefficient inside the cosine function (b) is [tex]\(4\)[/tex].
- The period is [tex]\( \frac{2π}{|4|} \)[/tex].
- Simplifying this, we get [tex]\( \frac{2π}{4} = \frac{π}{2} \)[/tex].
### Part (c): Phase Shift
The phase shift of a trigonometric function [tex]\( y = a \sin(bx + c) + d \)[/tex] or [tex]\( y = a \cos(bx + c) + d \)[/tex] is given by solving [tex]\( bx + c = 0 \)[/tex] for [tex]\( x \)[/tex].
1. For the function [tex]\( y = 4 \sin \left[ \frac{1}{3} (x + 30°) \right] - 1 \)[/tex]:
- Set the inside of the sine function to zero: [tex]\( \frac{1}{3} (x + 30°) = 0 \)[/tex].
- Solve for [tex]\( x \)[/tex]: [tex]\( x + 30° = 0 \)[/tex] [tex]\(\Rightarrow x = -30°\)[/tex].
- Therefore, the phase shift is [tex]\(-30°\)[/tex].
2. For the function [tex]\( y = -\frac{1}{2} \cos \left[ 4 (x + 135°) \right] + 2 \)[/tex]:
- Set the inside of the cosine function to zero: [tex]\( 4 (x + 135°) = 0 \)[/tex].
- Solve for [tex]\( x \)[/tex]: [tex]\( x + 135° = 0 \)[/tex] [tex]\(\Rightarrow x = -135°\)[/tex].
- Therefore, the phase shift is [tex]\(-135°\)[/tex].
### Part (d): Vertical Shift
The vertical shift of a trigonometric function [tex]\( y = a \sin(bx + c) + d \)[/tex] or [tex]\( y = a \cos(bx + c) + d \)[/tex] is given by the constant [tex]\( d \)[/tex] at the end of the expression.
1. For the function [tex]\( y = 4 \sin \left[ \frac{1}{3} (x + 30°) \right] - 1 \)[/tex]:
- The vertical shift is [tex]\(-1\)[/tex].
2. For the function [tex]\( y = -\frac{1}{2} \cos \left[ 4 (x + 135°) \right] + 2 \)[/tex]:
- The vertical shift is [tex]\(2\)[/tex].
### Summary of Results
a) Amplitude:
- Function (i): [tex]\(4\)[/tex]
- Function (ii): [tex]\(\frac{1}{2}\)[/tex]
b) Period:
- Function (i): [tex]\(6π\)[/tex] (approximately [tex]\(18.85\)[/tex])
- Function (ii): [tex]\(\frac{π}{2}\)[/tex] (approximately [tex]\(1.57\)[/tex])
c) Phase Shift:
- Function (i): [tex]\(-30°\)[/tex]
- Function (ii): [tex]\(-135°\)[/tex]
d) Vertical Shift:
- Function (i): [tex]\(-1\)[/tex]
- Function (ii): [tex]\(2\)[/tex]
### Part (a): Amplitude
The amplitude of a trigonometric function [tex]\( y = a \sin(bx + c) + d \)[/tex] or [tex]\( y = a \cos(bx + c) + d \)[/tex] is given by the absolute value of the coefficient [tex]\( a \)[/tex].
1. For the function [tex]\( y = 4 \sin \left[ \frac{1}{3} (x + 30°) \right] - 1 \)[/tex]:
- The coefficient of [tex]\(\sin\)[/tex] is [tex]\(4\)[/tex].
- Therefore, the amplitude is [tex]\(4\)[/tex].
2. For the function [tex]\( y = -\frac{1}{2} \cos \left[ 4 (x + 135°) \right] + 2 \)[/tex]:
- The coefficient of [tex]\(\cos\)[/tex] is [tex]\(-\frac{1}{2}\)[/tex].
- Therefore, the amplitude is the absolute value of [tex]\(-\frac{1}{2}\)[/tex], which is [tex]\(\frac{1}{2}\)[/tex].
### Part (b): Period
The period of a sine or cosine function [tex]\( y = a \sin(bx + c) + d \)[/tex] or [tex]\( y = a \cos(bx + c) + d \)[/tex] is given by the formula [tex]\( \frac{2π}{|b|} \)[/tex].
1. For the function [tex]\( y = 4 \sin \left[ \frac{1}{3} (x + 30°) \right] - 1 \)[/tex]:
- The coefficient inside the sine function (b) is [tex]\(\frac{1}{3}\)[/tex].
- The period is [tex]\( \frac{2π}{|\frac{1}{3}|} \)[/tex].
- Simplifying this, we get [tex]\( 2π \times 3 = 6π \)[/tex].
2. For the function [tex]\( y = -\frac{1}{2} \cos \left[ 4 (x + 135°) \right] + 2 \)[/tex]:
- The coefficient inside the cosine function (b) is [tex]\(4\)[/tex].
- The period is [tex]\( \frac{2π}{|4|} \)[/tex].
- Simplifying this, we get [tex]\( \frac{2π}{4} = \frac{π}{2} \)[/tex].
### Part (c): Phase Shift
The phase shift of a trigonometric function [tex]\( y = a \sin(bx + c) + d \)[/tex] or [tex]\( y = a \cos(bx + c) + d \)[/tex] is given by solving [tex]\( bx + c = 0 \)[/tex] for [tex]\( x \)[/tex].
1. For the function [tex]\( y = 4 \sin \left[ \frac{1}{3} (x + 30°) \right] - 1 \)[/tex]:
- Set the inside of the sine function to zero: [tex]\( \frac{1}{3} (x + 30°) = 0 \)[/tex].
- Solve for [tex]\( x \)[/tex]: [tex]\( x + 30° = 0 \)[/tex] [tex]\(\Rightarrow x = -30°\)[/tex].
- Therefore, the phase shift is [tex]\(-30°\)[/tex].
2. For the function [tex]\( y = -\frac{1}{2} \cos \left[ 4 (x + 135°) \right] + 2 \)[/tex]:
- Set the inside of the cosine function to zero: [tex]\( 4 (x + 135°) = 0 \)[/tex].
- Solve for [tex]\( x \)[/tex]: [tex]\( x + 135° = 0 \)[/tex] [tex]\(\Rightarrow x = -135°\)[/tex].
- Therefore, the phase shift is [tex]\(-135°\)[/tex].
### Part (d): Vertical Shift
The vertical shift of a trigonometric function [tex]\( y = a \sin(bx + c) + d \)[/tex] or [tex]\( y = a \cos(bx + c) + d \)[/tex] is given by the constant [tex]\( d \)[/tex] at the end of the expression.
1. For the function [tex]\( y = 4 \sin \left[ \frac{1}{3} (x + 30°) \right] - 1 \)[/tex]:
- The vertical shift is [tex]\(-1\)[/tex].
2. For the function [tex]\( y = -\frac{1}{2} \cos \left[ 4 (x + 135°) \right] + 2 \)[/tex]:
- The vertical shift is [tex]\(2\)[/tex].
### Summary of Results
a) Amplitude:
- Function (i): [tex]\(4\)[/tex]
- Function (ii): [tex]\(\frac{1}{2}\)[/tex]
b) Period:
- Function (i): [tex]\(6π\)[/tex] (approximately [tex]\(18.85\)[/tex])
- Function (ii): [tex]\(\frac{π}{2}\)[/tex] (approximately [tex]\(1.57\)[/tex])
c) Phase Shift:
- Function (i): [tex]\(-30°\)[/tex]
- Function (ii): [tex]\(-135°\)[/tex]
d) Vertical Shift:
- Function (i): [tex]\(-1\)[/tex]
- Function (ii): [tex]\(2\)[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.