Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, I'd be happy to walk you through the detailed solution for each part of the given question.
### Part (a): Amplitude
The amplitude of a trigonometric function [tex]\( y = a \sin(bx + c) + d \)[/tex] or [tex]\( y = a \cos(bx + c) + d \)[/tex] is given by the absolute value of the coefficient [tex]\( a \)[/tex].
1. For the function [tex]\( y = 4 \sin \left[ \frac{1}{3} (x + 30°) \right] - 1 \)[/tex]:
- The coefficient of [tex]\(\sin\)[/tex] is [tex]\(4\)[/tex].
- Therefore, the amplitude is [tex]\(4\)[/tex].
2. For the function [tex]\( y = -\frac{1}{2} \cos \left[ 4 (x + 135°) \right] + 2 \)[/tex]:
- The coefficient of [tex]\(\cos\)[/tex] is [tex]\(-\frac{1}{2}\)[/tex].
- Therefore, the amplitude is the absolute value of [tex]\(-\frac{1}{2}\)[/tex], which is [tex]\(\frac{1}{2}\)[/tex].
### Part (b): Period
The period of a sine or cosine function [tex]\( y = a \sin(bx + c) + d \)[/tex] or [tex]\( y = a \cos(bx + c) + d \)[/tex] is given by the formula [tex]\( \frac{2π}{|b|} \)[/tex].
1. For the function [tex]\( y = 4 \sin \left[ \frac{1}{3} (x + 30°) \right] - 1 \)[/tex]:
- The coefficient inside the sine function (b) is [tex]\(\frac{1}{3}\)[/tex].
- The period is [tex]\( \frac{2π}{|\frac{1}{3}|} \)[/tex].
- Simplifying this, we get [tex]\( 2π \times 3 = 6π \)[/tex].
2. For the function [tex]\( y = -\frac{1}{2} \cos \left[ 4 (x + 135°) \right] + 2 \)[/tex]:
- The coefficient inside the cosine function (b) is [tex]\(4\)[/tex].
- The period is [tex]\( \frac{2π}{|4|} \)[/tex].
- Simplifying this, we get [tex]\( \frac{2π}{4} = \frac{π}{2} \)[/tex].
### Part (c): Phase Shift
The phase shift of a trigonometric function [tex]\( y = a \sin(bx + c) + d \)[/tex] or [tex]\( y = a \cos(bx + c) + d \)[/tex] is given by solving [tex]\( bx + c = 0 \)[/tex] for [tex]\( x \)[/tex].
1. For the function [tex]\( y = 4 \sin \left[ \frac{1}{3} (x + 30°) \right] - 1 \)[/tex]:
- Set the inside of the sine function to zero: [tex]\( \frac{1}{3} (x + 30°) = 0 \)[/tex].
- Solve for [tex]\( x \)[/tex]: [tex]\( x + 30° = 0 \)[/tex] [tex]\(\Rightarrow x = -30°\)[/tex].
- Therefore, the phase shift is [tex]\(-30°\)[/tex].
2. For the function [tex]\( y = -\frac{1}{2} \cos \left[ 4 (x + 135°) \right] + 2 \)[/tex]:
- Set the inside of the cosine function to zero: [tex]\( 4 (x + 135°) = 0 \)[/tex].
- Solve for [tex]\( x \)[/tex]: [tex]\( x + 135° = 0 \)[/tex] [tex]\(\Rightarrow x = -135°\)[/tex].
- Therefore, the phase shift is [tex]\(-135°\)[/tex].
### Part (d): Vertical Shift
The vertical shift of a trigonometric function [tex]\( y = a \sin(bx + c) + d \)[/tex] or [tex]\( y = a \cos(bx + c) + d \)[/tex] is given by the constant [tex]\( d \)[/tex] at the end of the expression.
1. For the function [tex]\( y = 4 \sin \left[ \frac{1}{3} (x + 30°) \right] - 1 \)[/tex]:
- The vertical shift is [tex]\(-1\)[/tex].
2. For the function [tex]\( y = -\frac{1}{2} \cos \left[ 4 (x + 135°) \right] + 2 \)[/tex]:
- The vertical shift is [tex]\(2\)[/tex].
### Summary of Results
a) Amplitude:
- Function (i): [tex]\(4\)[/tex]
- Function (ii): [tex]\(\frac{1}{2}\)[/tex]
b) Period:
- Function (i): [tex]\(6π\)[/tex] (approximately [tex]\(18.85\)[/tex])
- Function (ii): [tex]\(\frac{π}{2}\)[/tex] (approximately [tex]\(1.57\)[/tex])
c) Phase Shift:
- Function (i): [tex]\(-30°\)[/tex]
- Function (ii): [tex]\(-135°\)[/tex]
d) Vertical Shift:
- Function (i): [tex]\(-1\)[/tex]
- Function (ii): [tex]\(2\)[/tex]
### Part (a): Amplitude
The amplitude of a trigonometric function [tex]\( y = a \sin(bx + c) + d \)[/tex] or [tex]\( y = a \cos(bx + c) + d \)[/tex] is given by the absolute value of the coefficient [tex]\( a \)[/tex].
1. For the function [tex]\( y = 4 \sin \left[ \frac{1}{3} (x + 30°) \right] - 1 \)[/tex]:
- The coefficient of [tex]\(\sin\)[/tex] is [tex]\(4\)[/tex].
- Therefore, the amplitude is [tex]\(4\)[/tex].
2. For the function [tex]\( y = -\frac{1}{2} \cos \left[ 4 (x + 135°) \right] + 2 \)[/tex]:
- The coefficient of [tex]\(\cos\)[/tex] is [tex]\(-\frac{1}{2}\)[/tex].
- Therefore, the amplitude is the absolute value of [tex]\(-\frac{1}{2}\)[/tex], which is [tex]\(\frac{1}{2}\)[/tex].
### Part (b): Period
The period of a sine or cosine function [tex]\( y = a \sin(bx + c) + d \)[/tex] or [tex]\( y = a \cos(bx + c) + d \)[/tex] is given by the formula [tex]\( \frac{2π}{|b|} \)[/tex].
1. For the function [tex]\( y = 4 \sin \left[ \frac{1}{3} (x + 30°) \right] - 1 \)[/tex]:
- The coefficient inside the sine function (b) is [tex]\(\frac{1}{3}\)[/tex].
- The period is [tex]\( \frac{2π}{|\frac{1}{3}|} \)[/tex].
- Simplifying this, we get [tex]\( 2π \times 3 = 6π \)[/tex].
2. For the function [tex]\( y = -\frac{1}{2} \cos \left[ 4 (x + 135°) \right] + 2 \)[/tex]:
- The coefficient inside the cosine function (b) is [tex]\(4\)[/tex].
- The period is [tex]\( \frac{2π}{|4|} \)[/tex].
- Simplifying this, we get [tex]\( \frac{2π}{4} = \frac{π}{2} \)[/tex].
### Part (c): Phase Shift
The phase shift of a trigonometric function [tex]\( y = a \sin(bx + c) + d \)[/tex] or [tex]\( y = a \cos(bx + c) + d \)[/tex] is given by solving [tex]\( bx + c = 0 \)[/tex] for [tex]\( x \)[/tex].
1. For the function [tex]\( y = 4 \sin \left[ \frac{1}{3} (x + 30°) \right] - 1 \)[/tex]:
- Set the inside of the sine function to zero: [tex]\( \frac{1}{3} (x + 30°) = 0 \)[/tex].
- Solve for [tex]\( x \)[/tex]: [tex]\( x + 30° = 0 \)[/tex] [tex]\(\Rightarrow x = -30°\)[/tex].
- Therefore, the phase shift is [tex]\(-30°\)[/tex].
2. For the function [tex]\( y = -\frac{1}{2} \cos \left[ 4 (x + 135°) \right] + 2 \)[/tex]:
- Set the inside of the cosine function to zero: [tex]\( 4 (x + 135°) = 0 \)[/tex].
- Solve for [tex]\( x \)[/tex]: [tex]\( x + 135° = 0 \)[/tex] [tex]\(\Rightarrow x = -135°\)[/tex].
- Therefore, the phase shift is [tex]\(-135°\)[/tex].
### Part (d): Vertical Shift
The vertical shift of a trigonometric function [tex]\( y = a \sin(bx + c) + d \)[/tex] or [tex]\( y = a \cos(bx + c) + d \)[/tex] is given by the constant [tex]\( d \)[/tex] at the end of the expression.
1. For the function [tex]\( y = 4 \sin \left[ \frac{1}{3} (x + 30°) \right] - 1 \)[/tex]:
- The vertical shift is [tex]\(-1\)[/tex].
2. For the function [tex]\( y = -\frac{1}{2} \cos \left[ 4 (x + 135°) \right] + 2 \)[/tex]:
- The vertical shift is [tex]\(2\)[/tex].
### Summary of Results
a) Amplitude:
- Function (i): [tex]\(4\)[/tex]
- Function (ii): [tex]\(\frac{1}{2}\)[/tex]
b) Period:
- Function (i): [tex]\(6π\)[/tex] (approximately [tex]\(18.85\)[/tex])
- Function (ii): [tex]\(\frac{π}{2}\)[/tex] (approximately [tex]\(1.57\)[/tex])
c) Phase Shift:
- Function (i): [tex]\(-30°\)[/tex]
- Function (ii): [tex]\(-135°\)[/tex]
d) Vertical Shift:
- Function (i): [tex]\(-1\)[/tex]
- Function (ii): [tex]\(2\)[/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.