Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine if the lines given by the equations [tex]\( y = 2x - 7 \)[/tex] and [tex]\( y = x - 7 \)[/tex] will intersect, we need to find a common point [tex]\((x, y)\)[/tex] that satisfies both equations simultaneously.
### Step-by-Step Solution:
1. Set the Equations Equal:
Since both equations are equal to [tex]\( y \)[/tex], we can set them equal to each other to find the [tex]\( x \)[/tex]-coordinate of the intersection.
[tex]\[ 2x - 7 = x - 7 \][/tex]
2. Isolate [tex]\( x \)[/tex]:
To isolate [tex]\( x \)[/tex], we subtract [tex]\( x \)[/tex] from both sides:
[tex]\[ 2x - x - 7 = x - x - 7 \][/tex]
Simplifying this, we get:
[tex]\[ x - 7 = -7 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
Now, add 7 to both sides of the equation:
[tex]\[ x - 7 + 7 = -7 + 7 \][/tex]
Simplifying this, we get:
[tex]\[ x = 0 \][/tex]
4. Find the Corresponding [tex]\( y \)[/tex]-value:
Substitute [tex]\( x = 0 \)[/tex] back into either of the original equations to find the corresponding [tex]\( y \)[/tex]-value. Let's use [tex]\( y = 2x - 7 \)[/tex]:
[tex]\[ y = 2(0) - 7 \][/tex]
Simplifying this, we get:
[tex]\[ y = -7 \][/tex]
5. Intersection Point:
The intersection point of the two lines is [tex]\((0, -7)\)[/tex].
6. Verification:
To verify, we substitute [tex]\( x = 0 \)[/tex] into both original equations to ensure the point lies on both lines.
For the first equation, [tex]\( y = 2x - 7 \)[/tex]:
[tex]\[ y = 2(0) - 7 = -7 \][/tex]
For the second equation, [tex]\( y = x - 7 \)[/tex]:
[tex]\[ y = 0 - 7 = -7 \][/tex]
Since both equations give the same [tex]\( y \)[/tex]-value of [tex]\(-7\)[/tex], the lines indeed intersect at the point [tex]\((0, -7)\)[/tex].
### Conclusion:
Yes, the lines given by the equations [tex]\( y = 2x - 7 \)[/tex] and [tex]\( y = x - 7 \)[/tex] will intersect. They intersect at the point [tex]\((0, -7)\)[/tex]. Thus, the lines do intersect.
### Step-by-Step Solution:
1. Set the Equations Equal:
Since both equations are equal to [tex]\( y \)[/tex], we can set them equal to each other to find the [tex]\( x \)[/tex]-coordinate of the intersection.
[tex]\[ 2x - 7 = x - 7 \][/tex]
2. Isolate [tex]\( x \)[/tex]:
To isolate [tex]\( x \)[/tex], we subtract [tex]\( x \)[/tex] from both sides:
[tex]\[ 2x - x - 7 = x - x - 7 \][/tex]
Simplifying this, we get:
[tex]\[ x - 7 = -7 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
Now, add 7 to both sides of the equation:
[tex]\[ x - 7 + 7 = -7 + 7 \][/tex]
Simplifying this, we get:
[tex]\[ x = 0 \][/tex]
4. Find the Corresponding [tex]\( y \)[/tex]-value:
Substitute [tex]\( x = 0 \)[/tex] back into either of the original equations to find the corresponding [tex]\( y \)[/tex]-value. Let's use [tex]\( y = 2x - 7 \)[/tex]:
[tex]\[ y = 2(0) - 7 \][/tex]
Simplifying this, we get:
[tex]\[ y = -7 \][/tex]
5. Intersection Point:
The intersection point of the two lines is [tex]\((0, -7)\)[/tex].
6. Verification:
To verify, we substitute [tex]\( x = 0 \)[/tex] into both original equations to ensure the point lies on both lines.
For the first equation, [tex]\( y = 2x - 7 \)[/tex]:
[tex]\[ y = 2(0) - 7 = -7 \][/tex]
For the second equation, [tex]\( y = x - 7 \)[/tex]:
[tex]\[ y = 0 - 7 = -7 \][/tex]
Since both equations give the same [tex]\( y \)[/tex]-value of [tex]\(-7\)[/tex], the lines indeed intersect at the point [tex]\((0, -7)\)[/tex].
### Conclusion:
Yes, the lines given by the equations [tex]\( y = 2x - 7 \)[/tex] and [tex]\( y = x - 7 \)[/tex] will intersect. They intersect at the point [tex]\((0, -7)\)[/tex]. Thus, the lines do intersect.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.