Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
- distance: 19 m
- height: 9 m
Step-by-step explanation:
You want to know the distance and height of a pole observed to have an angle of depression of 6° and an angle of elevation of 21° from a point 2 m high.
Tangent
In a right triangle, the tangent function relates angles to the legs of the triangle:
Tan = Opposite/Adjacent
We can use this relation twice to solve this problem.
Distance
The distance to the pole can be found from ...
[tex]\tan(6^\circ)=\dfrac{\text{man's height}}{\text{distance to pole}}\\\\\\\text{distance to pole}=\dfrac{\text{$2$ m}}{\tan(6^\circ)}\approx19.03\text{ m}[/tex]
The distance of the man from the pole is about 19 meters.
Height
The height of the pole above the man's height is ...
[tex]\tan(21^\circ)=\dfrac{\text{additional height}}{\text{distance to pole}}\\\\\\\text{additional height}=\text{(distance to pole)}\times\tan(21^\circ)\\\\\text{additional height}=(19.03\text{ m})\tan(21^\circ)\approx7.30\text{ m}[/tex]
Since the man's observation point is 2 m above the ground, the height of the pole is ...
pole height = 2 m + 7.30 m = 9.30 m
The height of the pole is about 9 meters.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.